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Chapter 1

Introduction

The purpose of this work is to present a proof of a special case of Theorem 2.1 in [1] (see Theorem
1 below). Our proof will follow closely the proof of Theorem 2.1 in [1] but we try to present it in
a more accessible way. Theorem 2.1 in [1] characterizes the high dimensional limit of the extremal
eigenvalues of some random matrix X which is perturbed by some deterministic matrix A. It states
that in the high dimensional limit the matrix M = X + A has eigenvalues outside the spectrum
of X iff A is ”big enough”. Further it gives the explicit values of these eigenvalues outside the
spectrum of X.

For simplicity we will focus on the Gaussian case namely X being a Gaussian unitary ensemble
(GUE) in the complex case and a Gaussian orthogonal ensemble (GOE) in the real case instead
of a general Wigner matrix. Further we will also restrict ourselves to the case of A being a
rank one projection instead of a finite rank projection. Our convention for the definition of a
GUE (resp. GOE) is the following. A GUE (resp. GOE) is a collection of Hermitian matrices
W = W (N) ∈ CN×N (resp.W ∈ RN×N ) such that Wii for 1 ≤ i ≤ N and

√
2Re(Wij),

√
2Im(Wij)

for 1 ≤ i < j ≤ N (resp. 1√
2
Wii for 1 ≤ i ≤ N and Wij for 1 ≤ i < j ≤ N) have centered

Gaussian distribution with variance σ2 and are all independent. We write the rank one projection
as A = θaa∗ with a = a(N) ∈ CN , ‖a‖ = 1 (resp. a ∈ RN ) and θ ∈ R. For ease of notation we will
also write X = 1√

N
W .

Our goal is to prove the following.

Theorem 1 (Theorem 2.1 in [1]). Let M = M(N) = X + A and denote by λk the k-th largest
eigenvalue. Then for any joint realization of (M(N))N∈N the following statements hold almost
surely

lim
N→∞

λ1(M) =

{
2σ if θ ≤ σ
θ + σ2

θ if θ > σ
(1.1)

and for any fixed k > 1
lim
N→∞

λk(M) = 2σ. (1.2)

Similarly

lim
N→∞

λN (M) =

{
2σ if θ ≥ −σ
θ + σ2

θ if θ < −σ
(1.3)

and for any fixed k > 1
lim
N→∞

λN−k(M) = −2σ. (1.4)
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We want to briefly explain some intuition about the result. The semicircle law states that in
the Wigner case (A = 0) the empirical distribution of the eigenvalues of M converges almost surely
to the semicircle distribution µsc given by

µsc ∼
1

2πσ2

√
4σ2 − x21[−2σ,2σ](x).

A pedagogical reference is [2]. It can be further shown (Theorem 2.12 in [6]) that in the Wigner
case for any fixed k ∈ N we have that almost surely the extremal eigenvalues λ1(M), ..., λk(M) and
λN (M), ..., λN−k(M) converge to 2σ and −2σ respectively as N →∞. Thus the result of Theorem
1 can be understood in the following way. If |θ| ≤ σ then in the high dimensional limit the extremal
eigenvalues of M are the same as in the case A = 0. If |θ| > σ then we get exactly one eigenvalue

outside the support of the semicircle distribution. It is also useful to note that
∣∣∣θ + σ2

θ

∣∣∣ > 2σ iff

|θ| > σ.
Our main tool in proving Theorem 1 will be the Stieltjes transform. For z ∈ C \ R we denote

the resolvent of M by
G(z) = (zI −M)−1

and define
g(z) = E[trG(z))],

where tr = 1
N Tr is the normalized trace.

We also denote by

gσ(z) = E[(z − s)−1] =

∫
R

1

z − x
dµsc(x) (1.5)

the Stieltjes transform of a random variable s with semicircle distribution.
We will use C to denote a generic constant the value of which may change from line to line.

Similarly we let P denote a generic polynomial that may change from line to line. We will also say
that a quantity ∆(N, z), z ∈ C \ R is Oz(N

−p) for some p ∈ N if for some C, l

|∆(z)| ≤ C 1

Np
(1 + |z|)l(1 + |Im(z)|−1)l.

To make notation simpler we will be writing the RHS as 1
Np (1+|z|)lP (|Im(z)|−1). In our convention

always sure convergence refers to a probability space where all (MN )N∈N are realized jointly. Since
we will be deriving the almost sure convergence through the Borel-Cantelli Lemma, the convergence
results holds for any joint realization, so we do not specify an explicit realization.

This work is structured as follows. In chapter 2 we state some properties of the resolvent G and
the Stieltjes transform of the semicircle law gσ. We also introduce two important tools, namely
multivariate versions of the Poincaré inequality and Stein’s Lemma. Our goal in chapter 3 is to
obtain the ”Master equation”

g(z) = gσ(z) +
1

N
Lσ(z) +Oz(

1

N2
)

with an explicit Lσ given in (3.15). This gives us an explicit expression for the deviation of g from
gσ. In chapter 4 we can then use this to show that almost surely

lim
N→∞

Spect(M) ⊆ Kσ = [−2σ, 2σ] ∪ {θ +
σ2

θ
}. (1.6)

In chapter 5 we deduce Theorem 1 from (1.6) by first considering the case of small σ and then
obtaining the general case by a rescaling argument.
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Chapter 2

A few tools

We have the following useful properties of G(z) that are immediate to check.

Lemma 2. Let G = (zI −M)−1 be the resolvent of a Hermitian (resp. symmetric) matrix M and
z ∈ C \ R. Then

1. ‖G(z)‖ ≤ |Im(z)|−1 , (2.1)
where ‖·‖ denotes the operator norm. In particular it holds that |Gij(z)| ≤ |Im(z)|−1.

2. We have

1

N

N∑
i,j=1

|(GG)ij |2 =
1

N
Tr(G∗G∗GG) ≤ |Im(z)|−4 . (2.2)

3. The derivative of G with respect to M is given by

G′B = GBG (2.3)

for any matrix B.

4. For any z ∈ C such that |z| > ‖M‖

‖G‖ ≤ 1

|z| − ‖M‖
. (2.4)

We will also need the following properties of gσ(z). All of the statements apart from (2.6) can
be easily deduced from (2.6) and the definition of the Stieltjes transform. One way to obtain (2.6)
is to explicitly compute gσ(z) for z ∈ C \ R using the explicit definition in (1.5).

Lemma 3. The following holds

1. gσ is analytic on C \ [−2σ, 2σ]. (2.5)

2. For all z such that Im(z) 6= 0

(a) σ2g2
σ(z)− zgσ(z) + 1 = 0, (2.6)

(b) |gσ(z)| ≤ |Im(z)|−1 , (2.7)

(c)
∣∣gσ(z)−1

∣∣ ≤ |z|+ σ2 |Im(z)|−1 , (2.8)

(d)
∣∣g′σ(z)

∣∣ =

∣∣∣∣∫ 1

(z − x)2
dµsc(x)

∣∣∣∣ ≤ |Imz|−2 , (2.9)
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(e) Im(gσ(z))Im(z) < 0, (2.10)

(f)

∣∣∣∣ 1

agσ − z + θ

∣∣∣∣ ≤ |Imz|−1 for all a > 0, θ ∈ R. (2.11)

3. For all z such that |z| > 2σ

(a) |gσ(z)| ≤ 1

|z| − 2σ
, (2.12)

(b)
∣∣g′σ(z)

∣∣ =

∣∣∣∣∫ 1

(z − x)2
dµsc(x)

∣∣∣∣ ≤ 1

(|z| − 2σ)2
, (2.13)

(c)
∣∣gσ(z)−1

∣∣ ≤ |z|+ σ2

|z| − 2σ
. (2.14)

The Gaussian measure satisfies the following Poincaré inequality. Let µ denote the Gaussian
measure of the entries of W . Then for any f ∈ H1(R, µ) ∩ C1(R) we have

Var(f) ≤ Cσ2

∫ ∣∣f ′∣∣2 dµ, (2.15)

where Var(f) = Var(f(X)) and X ∼ N (0, σ2). Since we do not need the dependence on σ in this
inequality we will suppress it in the constant. The Poincaré inequality generalizes to

Lemma 4. We have for any complex valued function f on RN2
(resp. R

N(N+1)
2 ) such that both f

and ∇f are polynomially bounded

Var(f(M)) ≤ C

N
E[‖∇f(M)‖22],

where ‖M‖2 denotes the Frobenius norm of a matrix.

We refer to Theorem 3.20 in [4] for a proof of Lemma 4 (and (2.15)) in the case A = 0. It
is straightforward to deduce Lemma 4 from Theorem 3.20 in [4] by applying Theorem 3.20 for f̃
defined by f(M) = f̃(X).

We also have the following generalization of Stein’s Lemma

Lemma 5. Let Φ be a C1 function on the space of Hermitian (resp. symmetric) matrices. Then
for any deterministic Hermitian (resp. symmetric) matrix H

E[Φ′(X) ·H] =
N

σ2
E[Φ(X) Tr(XH)]

as long as both sides are well defined.

Note that Lemma 5 is just a reformulation of the multivariate version of Stein’s Lemma. The
multivariate version is obtained by coordinate wise integration by parts as in the one dimensional
version of Stein’s Lemma.
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Chapter 3

Master equation

The goal of this section is to establish Lemma 9 which states that

g(z) = gσ(z) +
1

N
Lσ(z) +Oz(

1

N2
) (3.1)

for an explicit Lσ (defined in (3.15)). This will then allow us to obtain information on Spect(M)
in the next chapter. We now briefly explain the strategy. The main idea is to first prove that g(z)
satisfies

σ2g(z)− zg(z) + 1 + ∆(z) = Oz(
1

N2
) (3.2)

for some appropriate quantity ∆(z) that is Oz(N
−1). Then we use that gσ satisfies an equation

similar to (3.2) (namely (2.6)) to obtain an asymptotic estimate of the form

g(z) = gσ(z) + ∆̃(z) +Oz(
1

Np
) for p ∈ {1, 2}. (3.3)

We will use a two step bootstrap argument. In the first step we will prove a crude version of
(3.2) in Lemma 6 that will allow us to obtain (3.3) for some ∆̃(z) and p = 1 in Lemma 7. We can
then obtain a stronger version of (3.2) in Lemma 8, which then allows us to prove (3.1) in Lemma
9.

Lemma 6. It holds that∣∣∣∣σ2g2(z)− zg(z) + 1 +
1

N
E[Tr(G(z)A)]

∣∣∣∣ ≤ P (|Im(z)|−1)

N2
. (3.4)

Proof. Let {Eij}1≤i,j≤N be the canonical basis of the space of N ×N matrices. Applying Lemma 5
to Φ(X) = Gij = (zI −X −A)−1

ij and H = Eij for any 1 ≤ i, j ≤ N we obtain

E[GiiGjj ] =
N

σ2
E[GijXij ].

Taking the normalized sum 1
N2

∑
i,j gives

E[tr(G)2] =
1

σ2
E[tr(GX)]. (3.5)

Writing
GX = (zI −X −A)−1(X +A− zI −A+ zI) = −I −GA+ zG,
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(3.5) implies

E[tr(G)2] +
1

σ2
(1 + E[tr(GA)]− z E[tr(G)]) = 0.

To conclude (3.4) it now suffices to prove that

Var(tr(G)) ≤ C |Im(z)|−4

N2
. (3.6)

Applying Lemma 4 with f(Φ(M)) = tr(G) and using the identity (2.3) for B = Eij we get

Var(tr(G)) ≤ C

N3
E

∑
i,j

|(GG)ij |2
 ≤ C

N2
|Im(z)|−4

so (3.6) holds.

Lemma 7. For any z ∈ C with Im(z) > 0

|g(z)− gσ(z)| ≤ (|z|+ C)
P (|Im(z)|−1)

N
. (3.7)

Proof. We first note that since A is rank one we have

|E[Tr(G(z)A)]| ≤ ‖G(z)‖ ≤ |Im(z)|−1 ,

so it follows from Lemma 6 that ∣∣σ2g2 − zg + 1
∣∣ ≤ P (|Im(z)|−1)

N
. (3.8)

We also define

O =

{
z ∈ C|Im(z) > 0,

PO(|Im(z)|−1)

N
(|z|+ σ2 |Im(z)|−1) |Im(z)|−1 <

1

4

}
,

where PO chosen such that (3.4) and (3.8) hold for P = PO. It is easily seen that O is nonempty
for large enough N . Now let z ∈ O. Noticing that

PO(|Im(z)|−1)

N
<

1

4
,

it follows from (3.8) that

|g(z)|
∣∣σ2g(z)− z

∣∣ ≥ 1

2

which, using (2.1), implies
1

|g(z)|
≤ 2(|z|+ σ2 |Im(z)|−1). (3.9)

Thus we can define

Λ(z) = σ2g(z) +
1

g(z)
.
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Then from (3.8) and (3.9) it follows that

|Λ(z)− z| ≤ P (|Im(z)|−1)

N
2(|z|+ σ2 |Im(z)|−1). (3.10)

Combining (3.10) with the fact that by construction of O

P (|Im(z)|−1)

N
2(|z|+ σ2 |Im(z)|−1) ≤ |Im(z)|

2

we obtain

|Im(Λ(z))− Im(z)| ≤ |Λ(z)− z| ≤ |Im(z)|
2

,

so

Im(Λ(z)) >
Im(z)

2
> 0. (3.11)

Lastly we want to show that
g(z) = gσ(Λ(z)). (3.12)

Let O′ = {z ∈ O| |Im(z)| > 2σ}, then for any z ∈ O′ we have from (3.11) and (2.8) that gσ(Λ(z)) 6=
0. Therefore we obtain from (2.6)

σ2gσ(Λ(z)) +
1

gσ(Λ(z))
= Λ(z) = σ2g(z) +

1

g(z)
.

Rearranging and multiplying both sides by gσ(Λ(z))g(z) we obtain

σ2gσ(Λ(z))g(z) (gσ(Λ(z))− g(z)) = gσ(Λ(z))− g(z).

We now show that σ2 |gσ(Λ(z))g(z)| < 1. We have |g(z)| ≤ |Im(z)|−1 ≤ 1
2σ and due to (2.7), (3.11)

also |gσ(Λ(z))| ≤ |Im(Λ(z))|−1 < 1
σ so (3.12) holds on O′. Since O′ is open and O is connected by

analytic continuation (3.12) holds on all of O.
Now (3.12)

|g(z)− gσ(z)| =
∣∣E[(z − s)−1(Λ(z)− s)−1](Λ(z)− z)

∣∣
≤ |Im(z)|−1 |Im(Λ(z))|−1 |Λ(z)− z| ,

where s is distributed according to the semicircle law with variance σ2. Combining (3.10),(3.11)
now shows that (3.7) holds true on O.

It remains to consider the case z /∈ O. For such a z we have by definition of O that

|Im(z)|−1 ≤ 4
PO(|Im(z)|−1)

N
(|z|+ σ2 |Im(z)|−1) |Im(z)|−2 . (3.13)

Since |g(z)| , |gσ(z)| ≤ |Im(z)|−1 due to (2.1) and (2.7) respectively we observe that (3.7) holds also
for z /∈ O.

Lemma 8. For any z ∈ C with Im(z) > 0∣∣∣∣σ2g(z)− zg(z) + 1 +
1

N
Eσ(z)

∣∣∣∣ ≤ (|z|+ C)
P (|Im(z)|−1)

N2
,

where Eσ(z) := θ
z−σ2gσ(z)−θ and θ is the nonzero eigenvalue of A.
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Proof. We argue similarly as in Lemma 6. Applying Lemma 5 with Φ = Gil and H = Ejl we obtain

E[GijGll] =
N

σ2
E[GilXlj ],

so by taking the normalized sum over l we get

1

N

∑
l

E[GijGll] =
1

σ2
E[(GX)ij ],

which can be rearranged as
σ2 E[Gij tr(G)] = E[(GX)ij ].

Writing
GX = (zI −X −A)−1(X +A− zI −A+ zI) = −I −GA+ zG,

we have for any i, j

hij := σ2 E[Gij tr(G)] + δij − z E[Gij ] + E[(GA)ij ] = 0.

Now recalling that A = θaa∗ with ‖a‖ = 1 we define α =
∑

i,j āiajGij . Noting that∑
i,j

āiaj(GA)ij = 〈a,GAa〉 = θα,

we have
0 =

∑
ij

āiajhij = σ2 E[α tr(G)] + 1 + (θ − z)E[α]. (3.14)

By Jensen’s inequality we have

|E[α(tr(G)− g)]| ≤ E[|α(tr(G)− g)|2]]
1
2 = Oz(

1

N
),

since α is bounded and Var(tr(G)) = Oz(
1
N2 ) due to (3.6). We can combine this with (3.14) to

obtain

E[α](σ2g(z) + θ − z) + 1 = Oz(
1

N
).

Now it follows from Lemma 7 that E[α](σ2gσ(z) + θ − z) + 1 = Oz(N
−1) so due to (2.11)

Tr(GA) = θE[α] =
θ

z − σ2gσ(z)− θ
+Oz(

1

N
).

Combining this with Lemma 7 finishes the proof.

Lemma 9. For any z ∈ C \ R ∣∣∣∣gσ(z)− g(z) +
1

N
Lσ(z)

∣∣∣∣ = Oz(
1

N2
),

where
Lσ(z) = gσ(z)−1g′σ(z)Eσ(z) = gσ(z)−1 E[(z − s)−2]Eσ(z) (3.15)

and s is distributed according to the semicircle law with variance σ2.
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Proof. We may assume that Im(z) > 0, since writing out the definitions of gσ(z), g(z), Lσ(z) we
observe that gσ(z̄) = ḡσ(z), g(z̄) = ḡ(z), Lσ(z̄) = L̄σ(z). If z ∈ O∣∣∣∣gσ(z)− g(z) +

1

N
Lσ(z)

∣∣∣∣ =

∣∣∣∣gσ(z)− gσ(Λ(z)) +
1

N
Lσ(z)

∣∣∣∣
=
∣∣E[(z − s)−1(Λ(z)− s)−1(Λ(z)− z) + gσ(z)−1(z − s)−2Eσ(z)]

∣∣
≤
∣∣∣∣E[(z − s)−1(Λ(z)− s)−1

(
Λ(z)− z +

1

N
g−1
σ (z)Eσ(z)

)∣∣∣∣
+ E

[∣∣(z − s)−1((z − s)−1 − (Λ(z)− s)−1)
∣∣] ∣∣∣∣ 1

N
g−1
σ (z)Eσ(z)

∣∣∣∣
≤ 2 |Im(z)|−2

∣∣∣∣Λ(z)− z +
1

N
g−1
σ (z)Eσ(z)

∣∣∣∣ (3.16)

+
P (|Im(z)|−1)

N
|Λ(z)− z| (|z|+ C). (3.17)

Here we have used (2.7), (3.11), (2.8) and

|Eσ(z)| ≤ P (|Im(z)|−1), (3.18)

which follows from (2.11). By (3.10) it follows that the term in (3.17) is Oz(N
−2). For the term in

(3.16) we have ∣∣∣∣Λ(z)− z +
1

N
g−1
σ (z)Eσ(z)

∣∣∣∣ =
1

g(z)

(
σ2g2(z)− zg(z) + 1 +

Eσ(z)

N

)
+

1

N

Eσ(z)

g(z)gσ(z)
(g(z)− gσ(z)).

Using Lemma 8, (3.9), Lemma 7, (3.18) and (2.8) we obtain∣∣∣∣Λ(z)− z +
1

N
g−1
σ (z)Eσ(z)

∣∣∣∣ = Oz(N
−2).

It remains to consider the case z /∈ O. By definition of O we have that z /∈ O implies

1 < (|z|+ C)
P (|Im(z)|−1)

N
,

so it is enough to show that ∣∣∣∣gσ(z)− g(z) +
1

N
Lσ(z)

∣∣∣∣ = Oz(1).

But this holds since Lemma 7 implies that |gσ(z)− g(z)| = Oz(N
−1) and (2.8) and (3.18) imply

that Lσ(z) = Oz(1).
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Chapter 4

The spectrum of M

Using the bounds from the last chapter we are now able to prove the following

Theorem 10. Let ρσ := θ + σ2

θ where θ is the nonzero eigenvalue of A and

Kσ := [−2σ, 2σ] ∪ {ρσ}.

Then almost surely
lim
N→∞

Spect(M) ⊆ Kσ.

This theorem will be the main ingredient for the proof of Theorem 1 in the next chapter. To
prove Theorem 10 we will first show that Lσ(z) is the Stieltjes transform of a distribution µσ, the
support of which is contained in Kσ. Then Lemma 9 will give us a bound on the expected number
of eigenvalues outside of Kσ. Finally a bound on the variance of this number will allow us to deduce
Theorem 10.

For the first step will we use the following characterization which we do not prove.

Theorem 11 ([5]). Let µ be a distribution (in the sense of generalized functions) on R with compact
support K and denote by l(z) = µ( 1

z−x) its Stieltjes transform. Then l is analytic on C \R and can
be extended to C \K. Moreover l satisfies

i) lim|z|→∞ l(z) = 0.

ii) There exists a compact set K and n ∈ N, such that for any z ∈ C \ R

|l(z)| ≤ C max{1, dist(z,K)−n}.

iii) For any test function ϕ ∈ C∞c (R,R)

µ(ϕ) = − 1

π
lim
y→0+

Im

∫
R
ϕ(x)l(x+ iy) dx.

Conversely if K ⊂ R is compact and l is an analytic function on C \K satisfying i), ii) , then l
is the Stieltjes transform of a distribution µ on R with supp(µ) ⊂ K. Moreover suppµ is precisely
the set of singular points of l.

This allows us to prove

Lemma 12. We have that Lσ(z) defined in (3.15) is the Stieltjes transform of a distribution µσ,
the support of which is contained in Kσ
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Proof. We will first show that Lσ satisfies i) and ii) in Theorem 11. Recall that

Lσ(z) = gσ(z)−1g′σ(z)
θ

z − σ2gσ − θ
.

It follows from (2.12), (2.13), (2.14) that Lσ satisfies i). From (2.8), (2.9), (2.11) it follows that ii)
holds locally with n = 4. Since Lσ vanishes at ∞ it follows that ii) holds (globally).

Due to Theorem 10 we now only need to show that Lσ has no singular points in Kc
σ. By (2.6)

we can rewrite

Lσ(z) = gσ(z)−1g′σ(z)
θ

1/gσ(z)− θ
.

Using that for x ∈ R \ [−2σ, 2σ]

gσ(x) =
x

2σ2
(1−

√
1− 4σ2/x2),

we see that
1

gσ(x)
− θ = 0 ⇐⇒ x = ρσ.

Thus the statement of the Lemma is immediate from the explicit form of Lσ(x).

We will now show that

Lemma 13. For any test function ϕ ∈ C∞c (R,R) we have

E[tr(ϕ(M))] =

∫
ϕdµsc −

1

N
µσ(ϕ) +O(

1

N2
). (4.1)

Thus for any real valued smooth ϕ such that ϕ is constant outside of a compact set and suppϕ∩Kσ =
∅ there is a constant Cϕ such that almost surely

|tr(ϕ(M))| ≤ CϕN−
4
3 for almost everyN. (4.2)

Proof. Let r(z) = g(z)−gσ(z)+ 1
NLσ(z). Since g(z),−gσ(z), 1

NLσ(z) are all the Stieltjes transform
of some distribution (g(z),−gσ(z) by definition and 1

NLσ(z) due to Lemma 12) , r is the Stieltjes
transform of the sum of these distributions. Observing that the definitions of g, gσ, Lσ imply
r(z) = r(z) we can write the inverse Stieltjes transform of r as

E[tr(ϕ(M))]−
∫
ϕµsc +

1

N
µσ(ϕ) = − 1

π
lim
y→0+

Im

∫
R
ϕ(x)r(x+ iy) dx.

We know from Lemma 9 that

|r(z)| ≤ 1

N2
(|z|+ C)αP (|Im(z)|−1) (4.3)

for some α ∈ R+. It can be shown that this implies

lim sup
y→0+

∣∣∣∣∫
R
ϕ(x)r(x+ iy) dx

∣∣∣∣ ≤ C

N2
.

We only sketch the proof here. Define for p ∈ N+

Ip(z) =
1

(p− 1)!

∫ ∞
0

r(z + t)tp−1 exp(−t) dt.
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It is easy to check that
I1(z)− I ′1(z) = r(z)

and for p ≥ 2
Ip(z)− I ′p(z) = Ip−1.

Let D denote the operator that takes the derivative of a function. Using these identities we can
iteratively use integration by parts to obtain∫

R
ϕ(x)r(x+ iy) dx =

∫
R

((1 +D)pϕ)Ip(x+ iy) dx. (4.4)

Then one can show that (4.3) implies

lim
r→∞

∫
[r,r+ir]

r(z + z̃)z̃p−1 exp(−z̃) dz̃ = 0

so by Cauchy’s integral Theorem along the contour [0, r]∪ [r, r+ir]∪ [r+ir, 0], where[z1, z2] denotes
the line segment going from z1 to z2

Ip(z) = lim
r→∞

∫
[0,r+ir]

r(z + z̃)z̃p−1 exp(−z̃) dz̃.

Recall that by our convention the bound in Lemma 9 is to be understood as

|r(z)| ≤ (|z|+ C)l
P (|Im(z)|−1)

N2
.

Now we can choose p = k + 1 where k is the degree of P . It is then straightforward to check that
Ip(z) is bounded on any compact set, so (4.1) follows from (4.4).

To prove (4.2) below we will prove a bound on the variance of tr(ϕ(M)) namely

Var(tr(ϕ(M)) = O(N−4) (4.5)

for any ϕ such that ϕ is constant outside of a compact set and suppϕ ∩Kσ = ∅. Assume that we
have already proven this bound and let ZN = tr(ϕ(M)),ΩN = {ZN > N−4/3}. From (4.1) and
(4.5) we obtain

E[|ZN |2] = O(N−4).

Now

P (ΩN ) ≤
∫

Ω

∣∣∣N4/3ZN (ω)
∣∣∣2 dP (ω) ≤ N8/3 E[|ZN |2] = O(N−4/3),

so (4.2) follows from the Borel-Cantelli Lemma.
It remains to prove (4.5). We will deduce this from Lemma 4. As in Lemma 4 we will identify

matrices with vectors in RN2
(resp. R

N(N+1)
2 ) and denote by ‖·‖2 the Frobenius norm. Write

ϕ = c+ ψ with c ∈ R and ψ ∈ C∞c . For g(M) := tr(ϕ(M)) we obtain from Lemma 4

Var(g(M)) ≤ C

N
E[‖∇g(M)‖22].

We have for any Hermitian (resp. symmetric) matrix B

Tr(∇ψ(M) ·B) = Tr(ψ′(M) ·B).

12



This can be proven by showing this identity for polynomials and then extending it to all bounded
functions by approximating them with polynomials. We have

‖∇g(M)‖22 = sup
‖B‖2=1

|〈∇g(M), B〉|2

= sup
‖B‖2=1

∣∣∣∣ ddt
∣∣∣∣
t=0

g(M + tB)

∣∣∣∣2 .
Since the trace is linear we get∣∣∣∣ ddt

∣∣∣∣
t=0

g(M + tB)

∣∣∣∣2 = |tr(∇ψ(M) ·B)|2

=
∣∣tr(ψ′(M) ·B)

∣∣2
=

1

N2

∣∣Tr(ψ′(M) ·B)
∣∣2

≤ 1

N2
Tr(ψ′(M) · ψ′(M)) Tr(B ·B)

=
1

N
tr((ψ′)2(M)).

Where we have used the Cauchy-Schwartz inequality for the trace and the fact that Tr(B · B) =
‖B‖22 = 1. Putting everything together we obtain

Var(g(M)) ≤ C

N
‖∇g(M)‖22 ≤

C

N2
tr((ψ′)2(M)),

so now (4.5) follows from (4.1) since ψ vanishes on Kσ.

Now we can quickly deduce Theorem 10

Proof of Theorem 10. For ε > 0 let ϕ be a smooth function that vanishes on Kσ and is equal to 1
on the complement of Kσ + (−ε, ε). Lemma 13 implies that almost surely limN→∞Tr(ϕ(M)) = 0.
Since the number of eigenvalues outside of Kσ + (−ε, ε) is an integer and bounded by Tr(ϕ(M))
that number must be equal to 0 almost surely as N →∞. Since ε was arbitrary we are done.
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Chapter 5

Proof of Theorem 1

We are now able to deduce Theorem 1 from Theorem 10. The main tool that we will use is the
min-max-principle :

Lemma 14. Let H be a self-adjoint (resp. symmetric) matrix on V = CN (resp.V = RN ). Denote
by λk the k − th largest eigenvalue of H. Then

λk = min
U⊂V

dim(U)=k−1

max
v⊥U
‖v‖=1

〈v,Hv〉. (5.1)

Consequently for any self-adjoint(resp. symmetric) matrices H, H̃ we have

λj+k−1(H + H̃) ≤ λj(H) + λk(H̃) (5.2)

and for j + k ≥ N + 1
λj(H) + λk(H̃) ≤ λj+k−N (H + H̃). (5.3)

We refer to Section 12.1 in [3] for a proof of (5.1). Statements (5.2) and (5.3) are easily deduced
from (5.1).

The structure of the proof of Theorem 1 is the following. For σ ≥ θ Theorem 1 follows directly
from Lemma 14, the semicircle law and Theorem 10. For σ < θ again combining Lemma 14, the
semicircle law and Theorem 10 will imply that Theorem 1 is true for small σ. We will then argue by
contradiction that if Theorem 1 holds for some σ it is also holds for some slightly bigger σ, which
then allows us to conclude. Here the semicircle law refers to the statement that in the Wigner case
(A = 0) the empirical distribution of the eigenvalues of M converges almost surely to the semicircle
distribution µsc. We are now ready for the

Proof of Theorem 1. As an immediate consequence of Lemma 14 we obtain (1.2) and (1.4) from
the semicircle law, by setting H = A and H̃ = W and using that A has rank one. Thus we only
need to prove (1.1) and (1.3). By replacing A with −A and using that W has the same distribution
as −W we may w.l.o.g assume that θ > 0 (recall that A = θaa∗ ). In this case (1.3) is also an
immediate consequence from Lemma 14 and the semicircle law. Thus we only need to prove (1.1).
We first show that we may assume that θ > σ. If θ ≤ σ then from Theorem 10 it follows that
almost surely

lim sup
N→∞

λ1(M) ≤ 2σ.

But since due to (1.2) we always have

2σ = lim
N→∞

λ2(M) ≤ lim
N→∞

λ1(M),
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it follows that (1.1) is true for θ ≤ σ.
Thus we can assume that θ > σ. Due to Theorem 10 we only need to show that almost surely

lim inf
N→∞

λ1(M) > 2σ, (5.4)

as if we are given such a lower bound then Theorem 10 implies that almost surely

lim
N→∞

λ1(M) = ρσ

i.e. (1.1) holds.
Let now θ be fixed and define Σ be the set of all σ < θ for which (5.4) fails (M,W,A still depend

on this σ). We need to show that Σ = ∅. Assume that Σ 6= ∅, then it makes sense to define

σ0 := inf Σ.

Since Lemma 14 implies that (5.4) holds if σ is small enough we have σ0 > 0. Now let σ = σ0 + ε
2

for some (small) ε > 0 let Mε = M − εW . From the definition of σ0 it follows that almost surely

lim
N→∞

λ1(Mε) = ρσ−ε.

Since M = Mε + εW it follows from the min-max principle and the semicircle law that almost
surely

lim inf
N→∞

λ1(M) ≥ ρσ−ε − 2σε = θ +
σ2

θ
+ ε

(
−2 + ε

θ
− 2σ

)
.

Letting ε→ 0 we obtain

lim inf
N→∞

λ1(M) ≥ θ +
σ2

θ
> 2σ,

where we have used that by assumption θ > σ. Thus σ = σ0 + ε
2 satisfies (5.4). But this contradicts

the definition of σ0 so we must have Σ = ∅ which completes the proof.
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