Representation theory \& the Hubbard model

Simon Mayer

March 17, 2015

Outline

1. The Hubbard model
2. Representation theory of the symmetric group S_{n}
3. Representation theory of the special unitary group $S U(n)$
4. Ordering of energy levels

The Hubbard model

- General Hamiltonian

$$
\begin{gathered}
H=\underbrace{-\sum_{i, j, \sigma} t_{i j}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+\text { h.c. }\right)}_{\text {hopping term }}+\underbrace{\sum_{i} U_{i}\left(n_{i}-\mu\right)^{2}}_{\text {on-site interaction }} \\
i, j \in \Lambda, \quad \sigma \in\{1, \ldots, N\}
\end{gathered}
$$

- Simplifying assumptions
$t_{i j}=t$ for nearest neighbours, $U_{i}=U$ for all sites

Strong coupling limit

- Strong on-site interaction, weak (relative to on-site) hopping term:

$$
\frac{U}{t} \gg 1
$$

- Second order perturbation theory

$$
H_{\mathrm{eff}}=J \sum_{\langle i, j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}, \quad J=\frac{2 t^{2}}{U}
$$

(generalized) Heisenberg antiferromagnet, \mathbf{S}_{i} is "spin" operator at site i : usual spin operator for $N=2$, generalized spin operator for $N>2$

Representation theory of the symmetric group S_{n}

- $S_{n}=$ group of permutations of $\{1, \ldots, n\}$
- notation for $\sigma \in S_{n}$

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
\sigma(1) & \sigma(2) & \cdots & \sigma(n)
\end{array}\right)
$$

or in cycle notation

$$
\binom{12345}{53124} \leftrightarrow(15423), \quad\binom{12345}{31254} \leftrightarrow(132)(45)
$$

- Conjugacy class of $a \in S_{n}$

$$
C l(a)=\left\{b \in S_{n}: \exists g \in S_{n} \text { with } b=g a g^{-1}\right\}
$$

determined by cycle structure $\left(\nu_{1}, \ldots, \nu_{n}\right)$, index marks length of cycle

Representation theory of the symmetric group S_{n}

- Constraint $\nu_{1}+2 \nu_{2}+\cdots+n \nu_{n}=n$
- Switch variables $\lambda_{1}=\nu_{1}+\cdots+\nu_{n}, \lambda_{2}=\nu_{2}+\cdots+\nu_{n}, \cdots$, $\lambda_{n}=\nu_{n}$
- Then $\lambda_{1} \geq \cdots \geq \lambda_{n}$ and $\lambda_{1}+\cdots+\lambda_{n}=n$
- $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a partition of n, represented by Young diagram
- Example: $\lambda=(3,2,1,1)$ represented by

- 1-1 correspondence between conjugacy class and Young diagram

Representation theory of the symmetric group S_{n}

- Result: \# of Young diagrams = \# of conjugacy classes = \# of inequivalent irreducible representations (irreps) of S_{n}
- Attach to each distinct Young diagram λ a distinct irrep F_{λ} of S_{n}
- Young tabloid corresponding to a Young diagram is a decomposition of $\{1, \ldots, n\}$ into a union of disjoint sets with $\#$ of elements given by λ_{i}. E.g. tabloid for $\lambda=(3,2,1,1)$ is $\{t\}=\{2,3,5\}\{1,7\}\{4\}\{6\}$
- M_{λ} : set of all tabloids corresponding to λ,

$$
\# M_{\lambda}=\frac{n!}{\lambda_{1}!\cdots \lambda_{n}!}
$$

Representation theory of the symmetric group S_{n}

- Let S_{n} act on M_{λ}, get a representation of S_{n} on $\mathcal{F}\left(M_{\lambda}\right)$, the space of functions on M_{λ}
- Examples: $\lambda=(n), \lambda=(n-1,1), \lambda=(n-2,2)$
- Goal: To each λ corresponds unique "new" irrep F_{λ} of $\mathcal{F}\left(M_{\lambda}\right)$; the space $\mathcal{F}\left(M_{\lambda}\right)$ decomposes into direct sum of irreps isomorphic to certain of the F_{μ} with $\mu \geq \lambda$ (with multiplicity) together with the one unique new rep F_{λ}
\Rightarrow Each Young diagram determines an irrep of S_{n}.

Representation theory of the symmetric group S_{n}

- Young tableau t corresponding to λ : assignment of the numbers $1, \ldots, n$ to each of the boxes of λ; order matters! Every Young tableau gives rise to a Young tabloid
- Example: Young diagram $\lambda=(3,2,1,1)$, Young tableau

$$
t=, \text { Young tabloid }\{t\}=\{2,3,5\}\{1,7\}\{4\}\{6\}
$$

- $C_{t}=$ subgroup of S_{n} permuting the numbers in the columns of t among themselves; e.g. for t as above, $C_{t}=S_{\{3,1,4,6\}} \times S_{\{5,7\}}$

Representation theory of the symmetric group S_{n}

- $e_{t}=\sum_{\pi \in C_{t}} \operatorname{sgn}(\pi) \delta_{\pi\{t\}}$ for δ the unit function on $\mathcal{F}\left(M_{\lambda}\right)$
- Then define $F_{\lambda}=\operatorname{span}\left(e_{t}\right)$ where t ranges over all tableaux corresponding to λ
- Useful: Hook formula

$$
\operatorname{dim} F_{\lambda}=\frac{n!}{\prod_{b \in \lambda} \text { hook length }(b)}
$$

- Example: Construct e_{t} for S_{3} with the Young diagram

$$
\lambda=(2,1)=\square
$$

Representation theory of the special unitary group $S U(n)$

Strategy:

- Establish connection between irreps of the symmetric group and irreps of $G L(n)$
- Since $S U(n) \subset S L(n, \mathbb{C}) \subset G L(n, \mathbb{C})$, we will get rep of $S U(n)$
- Show that they are irreducible and all of the irreps of $S U(n)$

Representation theory of the special unitary group $S U(n)$

- Look at $V \otimes V$ for V a finite dim. vector space
- S_{2} acts on $V \otimes V$ by (12) $x \otimes y=y \otimes x$, has two 1-dim. irreps: trivial rep and sgn rep
- Have decomposition $V \otimes V=S^{2}(V) \oplus \Lambda^{2}(V)$ into symmetric and antisymmetric tensors
- $S^{2}(V)$ is direct sum of $\frac{1}{2} n(n+1)$ copies of trivial rep of S_{2}
- $\Lambda^{2}(V)$ is direct sum of $\frac{1}{2} n(n-1)$ copies of sgn rep of S_{2}
- A linear transformation on $V, A(x \otimes y)=A x \otimes A y$, commutes with the action of S_{2} :
$A(12)(x \otimes y)=A(y \otimes x)=A y \otimes A x=(12) A x \otimes A y=(12) A(x \otimes y)$
- Get rep of $G L(V)$ on $V \otimes V$ that commutes with S_{2} (and is irreducible on the subspaces S^{2} and Λ^{2})

Representation theory of the special unitary group $S U(n)$

- Now decompose $T_{r} V=V \otimes \cdots \otimes V$ (r factors) into irreducibles
- There exist distinct irreps $\left(\rho_{i}, U_{i}\right)$ of $G L(V)$, associated with a different rep $\left(\sigma_{i}, F_{i}\right)$ of S_{r}. Have decomposition

$$
T_{r} V=\left(U_{1} \otimes F_{1}\right) \oplus \cdots \oplus\left(U_{p} \otimes F_{p}\right)
$$

- $f_{i}=\operatorname{dim} F_{i}, s_{i}=\operatorname{dim} U_{i}$, then $T_{r} V$ decomposes under $G L(V)$ into a direct sum of f_{i} copies of U_{i} and under S_{r} into a direct sum of s_{i} copies of F_{i}

Representation theory of the special unitary group $S U(n)$

- Take Young diagram λ, let $\operatorname{dim} V=n$. Then define the entries of the dimension table by $d_{i j}=n+j-i$, where i labels the rows and j labels the columns of λ. We have

$$
\operatorname{dim} U_{\lambda}=\frac{\prod_{b \in \lambda} \text { hook length }(b)}{\prod_{b \in \lambda} d(b)}
$$

- Example: $\lambda=(4,3,1)$

$$
d=\begin{array}{cccc}
n & n+1 & n+2 & n+3 \\
n-1 & n & n+1 \\
n-2 & & & ,
\end{array}, \quad \text { hook length }=\begin{array}{|c|c|c|c|}
\hline 6 & 4 & 3 & 1 \\
\hline 4 & 2 & 1 & \\
\cline { 1 - 1 } & & &
\end{array}
$$

So for $n=3$, we have

$$
\operatorname{dim} U_{\lambda}=\frac{3 \cdot 4 \cdot 5 \cdot 6 \cdot 2 \cdot 3 \cdot 4}{6 \cdot 4 \cdot 3 \cdot 4 \cdot 2}=15
$$

Representation theory of the special unitary group $S U(n)$

- λ a Young diagram, F_{λ} corresponding irrep of $S_{r} . T_{r} V$ has component $W_{\lambda}=U_{\lambda} \otimes F_{\lambda}, t$ a tableau of type λ
- Define

$$
E_{t}=\sum_{\sigma \in C_{t}, \pi \in R_{t}} \operatorname{sgn}(\sigma) \sigma \pi
$$

- Then $E_{t}\left(T_{r} V\right)=U_{\lambda} \otimes e_{t}=\left\{\phi\left(e_{t}\right): \phi \in \operatorname{Hom}_{S_{r}}\left(F_{\lambda}, T_{r} V\right)\right\}$, so $E_{t}\left(T_{r} V\right)$ gives a copy of the irrep U_{λ}; in particular $E_{t}\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{r}}\right)$ span the space $E_{t}\left(T_{r} V\right)$ when v_{1}, \ldots, v_{r} is a basis of V and the indices i_{j} range from 1 to n
- Get basis of $E_{t}\left(T_{r} V\right)$ by arranging the $v_{i_{j}}$ so that
- i_{j} are non-decreasing along the rows
- strictly increasing on the columns of λ

Representation theory of the special unitary group $S U(n)$

- Goal: the U_{λ} are all the finite-dim. irreps of $S L(V)$, take $V=\mathbb{C}^{n}$
- subgroups of $\operatorname{SL}(n, \mathbb{C})$

$$
\begin{aligned}
N_{+} & =\left\{\left(\begin{array}{lll}
1 & & * \\
& & \ddots \\
0 & \ddots & 1
\end{array}\right)\right\}, \quad N_{-}=\left\{\left(\begin{array}{lll}
1 & & 0 \\
& & \\
& \ddots & \\
* & & 1
\end{array}\right)\right\}, \\
H & =\left\{\left(\begin{array}{lll}
\delta_{1} & & 0 \\
& \ddots & \\
0 & & \delta_{n}
\end{array}\right): \prod_{i=1}^{n} \delta_{i}=1\right\}
\end{aligned}
$$

- weight vector: simultaneous eigenvector for all elements of H \Leftrightarrow there exists function μ on H s.t. $\rho(\delta) v=\mu(\delta) v$ for all $\delta \in H$
- $\mu(\delta)=\delta_{1}^{m_{1}} \cdots \delta_{n}^{m_{n}}$, where the weight $m=\left(m_{1}, \ldots, m_{n}\right)$ is only defined up to adding a constant $s(1, \ldots, 1)$

Representation theory of the special unitary group $S U(n)$

- One can prove: Every finite-dim. rep of $S L(d, \mathbb{C})$ has a maximal weight vector (i.e. a simultaneous eigenvector of $B_{+}=H \cdot N_{+}$), it is determined (up to equivalence) by the corresponding highest weight m
- Passing to the Lie algebra of $S L(d, \mathbb{C})$, one shows that a maximal weight vector must obey

$$
m_{1} \geq m_{2} \geq \cdots \geq m_{n}
$$

(set $m_{n}=0$ by subtracting $m_{n}(1, \ldots, 1)$)

- This is just a Young diagram with (at most) $n-1$ rows!
- In particular, we have constructed all irreps of $S U(n)$

Ordering of energy levels

- Lieb/Mattis (1962), bipartite lattice with Heisenberg Hamiltonian ($N=2$ in our model); the ground state of H belongs at most to total spin $s:=\left|S_{A}-S_{B}\right|$ and (denoting $E(S)$ the lowest energy eigenvalue with total spin S) $E(S+1)>E(S)$ for all $S \geq s ; E(S)>E(s)$ for $S>s$ and a special type of lattice
- Proof utilizes M subspaces and the Perron-Frobenius theorem

Ordering of energy levels

- Generalization to our case: space of states $\mathcal{H}=\bigotimes_{i=1}^{|\Lambda|} \mathbb{C}^{N}$, decompose space as $\mathcal{H}=\bigoplus_{\lambda} \mathcal{H}_{\lambda}^{N}, \lambda$ are Young diagrams with at most $N-1$ rows (since H is invariant under $S U(N)$)
- Denote $E(\lambda)$ relative ground state energy in the space $\mathcal{H}_{\lambda}^{N}$
- Equivalent of LM theorem (Hakobyan, 2010 for the chain): If $\lambda \geq \lambda^{\prime}$, then $E\left(\lambda^{\prime}\right)>E(\lambda)$ and the relative ground state energy levels are non-degenerate (inside $\mathcal{H}_{\lambda}^{N}$)

Ordering of energy levels

- Perron-Frobenius: If a connected hermitian matrix has no positive off-diagonal elements then its ground state is non-degenerate and has positive components
- Special case of chain: construct non-positive basis

$$
\left|\left\{x^{1}\right\}, \ldots,\left\{x^{N}\right\}\right\rangle=\prod_{\sigma=1}^{N}\left(c_{x_{1}^{\sigma}, \sigma}^{\dagger} c_{x_{2}^{\sigma}, \sigma}^{\dagger} \cdots c_{x_{n_{\sigma}}^{\sigma}, \sigma}^{\dagger}\right)|0\rangle
$$

- Basic states in the same subspace $\mathcal{H}_{\lambda}^{N}$ are connected by the kinetic term in the Hamiltonian. Obtain uniqueness of relative ground state

$$
\Omega_{n_{1} \ldots n_{N}}=\sum_{\#\left\{x^{\sigma}\right\}=n_{\sigma}} \omega_{\left\{x^{1}\right\} \cdots\left\{x^{N}\right\}}\left|\left\{x^{1}\right\}, \ldots,\left\{x^{N}\right\}\right\rangle
$$

with strictly positive components from PF theorem

