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The Hubbard model

I General Hamiltonian

H = −
∑
i ,j,σ

tij
(
c†iσcjσ + h.c.

)
︸ ︷︷ ︸

hopping term

+
∑

i
Ui (ni − µ)2︸ ︷︷ ︸

on-site interaction

i , j ∈ Λ, σ ∈ {1, . . . ,N}
I Simplifying assumptions

tij = t for nearest neighbours,Ui = U for all sites



Strong coupling limit

I Strong on-site interaction, weak (relative to on-site) hopping
term:

U
t � 1

I Second order perturbation theory

Heff = J
∑
〈i ,j〉

Si · Sj , J = 2t2
U

(generalized) Heisenberg antiferromagnet, Si is “spin”
operator at site i : usual spin operator for N = 2, generalized
spin operator for N > 2



Representation theory of the symmetric group Sn

I Sn = group of permutations of {1, . . . , n}
I notation for σ ∈ Sn

σ =
(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)

or in cycle notation(
12345
53124

)
↔ (15423),

(
12345
31254

)
↔ (132)(45)

I Conjugacy class of a ∈ Sn

Cl(a) = {b ∈ Sn : ∃ g ∈ Sn with b = gag−1}

determined by cycle structure (ν1, . . . , νn), index marks length
of cycle



Representation theory of the symmetric group Sn

I Constraint ν1 + 2ν2 + · · · + nνn = n
I Switch variables λ1 = ν1 + · · · + νn, λ2 = ν2 + · · · + νn, . . . ,
λn = νn

I Then λ1 ≥ · · · ≥ λn and λ1 + · · · + λn = n
I λ = (λ1, . . . , λn) is a partition of n, represented by Young

diagram

I Example: λ = (3, 2, 1, 1) represented by

I 1-1 correspondence between conjugacy class and Young
diagram



Representation theory of the symmetric group Sn

I Result: # of Young diagrams = # of conjugacy classes =
# of inequivalent irreducible representations (irreps) of Sn

I Attach to each distinct Young diagram λ a distinct irrep Fλ of
Sn

I Young tabloid corresponding to a Young diagram is a
decomposition of {1, . . . , n} into a union of disjoint sets with
# of elements given by λi . E.g. tabloid for λ = (3, 2, 1, 1) is
{t} = {2, 3, 5}{1, 7}{4}{6}

I Mλ: set of all tabloids corresponding to λ,

#Mλ = n!
λ1! · · ·λn! .



Representation theory of the symmetric group Sn

I Let Sn act on Mλ, get a representation of Sn on F(Mλ), the
space of functions on Mλ

I Examples: λ = (n), λ = (n − 1, 1), λ = (n − 2, 2)
I Goal: To each λ corresponds unique “new” irrep Fλ of
F(Mλ); the space F(Mλ) decomposes into direct sum of
irreps isomorphic to certain of the Fµ with µ ≥ λ (with
multiplicity) together with the one unique new rep Fλ

⇒ Each Young diagram determines an irrep of Sn.



Representation theory of the symmetric group Sn

I Young tableau t corresponding to λ: assignment of the
numbers 1, . . . , n to each of the boxes of λ; order matters!
Every Young tableau gives rise to a Young tabloid

I Example: Young diagram λ = (3, 2, 1, 1), Young tableau

t =
3 5 2
1 7
4
6

, Young tabloid {t} = {2, 3, 5}{1, 7}{4}{6}

I Ct = subgroup of Sn permuting the numbers in the columns
of t among themselves; e.g. for t as above,
Ct = S{3,1,4,6} × S{5,7}



Representation theory of the symmetric group Sn

I et =
∑
π∈Ct sgn(π)δπ{t} for δ the unit function on F(Mλ)

I Then define Fλ = span(et) where t ranges over all tableaux
corresponding to λ

I Useful: Hook formula

dimFλ = n!∏
b∈λ hook length(b)

I Example: Construct et for S3 with the Young diagram

λ = (2, 1) =



Representation theory of the special unitary group SU(n)

Strategy:
I Establish connection between irreps of the symmetric group

and irreps of GL(n)
I Since SU(n) ⊂ SL(n,C) ⊂ GL(n,C), we will get rep of SU(n)
I Show that they are irreducible and all of the irreps of SU(n)



Representation theory of the special unitary group SU(n)

I Look at V ⊗ V for V a finite dim. vector space
I S2 acts on V ⊗ V by (12)x ⊗ y = y ⊗ x , has two 1-dim.

irreps: trivial rep and sgn rep
I Have decomposition V ⊗ V = S2(V )⊕ Λ2(V ) into symmetric

and antisymmetric tensors
I S2(V ) is direct sum of 1

2n(n + 1) copies of trivial rep of S2
I Λ2(V ) is direct sum of 1

2n(n − 1) copies of sgn rep of S2
I A linear transformation on V , A(x ⊗ y) = Ax ⊗ Ay ,

commutes with the action of S2:

A(12)(x⊗y) = A(y⊗x) = Ay⊗Ax = (12)Ax⊗Ay = (12)A(x⊗y)

I Get rep of GL(V ) on V ⊗ V that commutes with S2 (and is
irreducible on the subspaces S2 and Λ2)



Representation theory of the special unitary group SU(n)

I Now decompose Tr V = V ⊗ · · · ⊗ V (r factors) into
irreducibles

I There exist distinct irreps (ρi ,Ui ) of GL(V ), associated with a
different rep (σi ,Fi ) of Sr . Have decomposition

Tr V = (U1 ⊗ F1)⊕ · · · ⊕ (Up ⊗ Fp)

I fi = dimFi , si = dimUi , then Tr V decomposes under GL(V )
into a direct sum of fi copies of Ui and under Sr into a direct
sum of si copies of Fi



Representation theory of the special unitary group SU(n)

I Take Young diagram λ, let dimV = n. Then define the
entries of the dimension table by dij = n + j − i , where i labels
the rows and j labels the columns of λ. We have

dimUλ =
∏

b∈λ hook length(b)∏
b∈λ d(b)

I Example: λ = (4, 3, 1)

d =
n n + 1 n + 2 n + 3

n − 1 n n + 1
n − 2

, hook length =
6 4 3 1
4 2 1
1

So for n = 3, we have

dimUλ = 3 · 4 · 5 · 6 · 2 · 3 · 4
6 · 4 · 3 · 4 · 2 = 15



Representation theory of the special unitary group SU(n)

I λ a Young diagram, Fλ corresponding irrep of Sr . Tr V has
component Wλ = Uλ ⊗ Fλ, t a tableau of type λ

I Define
Et =

∑
σ∈Ct ,π∈Rt

sgn(σ)σπ

I Then Et(Tr V ) = Uλ ⊗ et = {φ(et) : φ ∈ HomSr (Fλ,Tr V )},
so Et(Tr V ) gives a copy of the irrep Uλ; in particular
Et(vi1 ⊗ · · · ⊗ vir ) span the space Et(Tr V ) when v1, . . . , vr is
a basis of V and the indices ij range from 1 to n

I Get basis of Et(Tr V ) by arranging the vij so that
I ij are non-decreasing along the rows
I strictly increasing on the columns of λ



Representation theory of the special unitary group SU(n)

I Goal: the Uλ are all the finite-dim. irreps of SL(V ), take
V = Cn

I subgroups of SL(n,C)

N+ =
{(

1 ∗
. . .

0 1

)}
, N− =

{(
1 0
. . .
∗ 1

)}
,

H =
{(

δ1 0
. . .

0 δn

)
:

n∏
i=1

δi = 1
}

I weight vector: simultaneous eigenvector for all elements of H
⇔ there exists function µ on H s.t. ρ(δ)v = µ(δ)v for all
δ ∈ H

I µ(δ) = δm1
1 · · · δmn

n , where the weight m = (m1, . . . ,mn) is
only defined up to adding a constant s(1, . . . , 1)



Representation theory of the special unitary group SU(n)

I One can prove: Every finite-dim. rep of SL(d ,C) has a
maximal weight vector (i.e. a simultaneous eigenvector of
B+ = H · N+), it is determined (up to equivalence) by the
corresponding highest weight m

I Passing to the Lie algebra of SL(d ,C), one shows that a
maximal weight vector must obey

m1 ≥ m2 ≥ · · · ≥ mn

(set mn = 0 by subtracting mn(1, . . . , 1))
I This is just a Young diagram with (at most) n − 1 rows!
I In particular, we have constructed all irreps of SU(n)



Ordering of energy levels

I Lieb/Mattis (1962), bipartite lattice with Heisenberg
Hamiltonian (N = 2 in our model); the ground state of H
belongs at most to total spin s := |SA − SB| and (denoting
E (S) the lowest energy eigenvalue with total spin S)
E (S + 1) > E (S) for all S ≥ s; E (S) > E (s) for S > s and a
special type of lattice

I Proof utilizes M subspaces and the Perron-Frobenius theorem



Ordering of energy levels

I Generalization to our case: space of states H =
⊗|Λ|

i=1CN ,
decompose space as H =

⊕
λHN

λ , λ are Young diagrams with
at most N − 1 rows (since H is invariant under SU(N))

I Denote E (λ) relative ground state energy in the space HN
λ

I Equivalent of LM theorem (Hakobyan, 2010 for the chain): If
λ ≥ λ′, then E (λ′) > E (λ) and the relative ground state
energy levels are non-degenerate (inside HN

λ )



Ordering of energy levels

I Perron-Frobenius: If a connected hermitian matrix has no
positive off-diagonal elements then its ground state is
non-degenerate and has positive components

I Special case of chain: construct non-positive basis

|{x1}, . . . , {xN}〉 =
N∏
σ=1

(c†xσ
1 ,σ

c†xσ
2 ,σ
· · · c†xσ

nσ ,σ
) |0〉

I Basic states in the same subspace HN
λ are connected by the

kinetic term in the Hamiltonian. Obtain uniqueness of relative
ground state

Ωn1...nN =
∑

#{xσ}=nσ

ω{x1}···{xN} |{x1}, . . . , {xN}〉

with strictly positive components from PF theorem
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