
Upper bound for the ground state energy of a dilute 2D Bose gas

Barbara Roos

February 28, 2020

1 Introduction

So far, there are few rigorous results about the ground state energy of a dilute Bose gas in two di-
mensions. For nonnegative potentials the ground state energy per particle in the thermodynamic
limit has been shown to be

e0(ρ) = 4πρb+ o(ρb)

for ρ→ 0, where b = 1/| ln ρa2| and a denotes the scattering length of the interaction potential
[4]. For the next order, non-rigorous approximations [1] and Monte Carlo simulations [5] suggest
the negative correction 4πρb2 ln(b). We calculate an upper bound on the ground state energy
using the variational method with a quasi-free trial state. For a dilute Bose gas in 3D the same
calculation has been done previously in [2]. We follow their computation and make the necessary
adjustments for the 2D case.

The setup is as follows. First we consider a finite 2D box Λ = [0, L]2 ⊂ R2 with periodic
boundary conditions. The number of bosons in our system is N and we include only two-body
interactions. The interactions are described by a rotationally symmetric potential V . We assume
that V 6≡ 0 is nonnegative, continuous and has finite range, i.e. V (x) = 0 for |x| ≥ R0. The
Hamiltonian is

HN = −
N∑
i=1

∆i +
1

2

N∑
i,j=1
i 6=j

V (xi − xj),

where ∆i is the Laplace operator with respect to the coordinates of the ith particle. For the
Fourier transfom of any function f(x) on Λ we use the convention

f̂p =

∫
Λ
e−ip·xf(x)dx, f(x) =

1

|Λ|
∑
p∈Λ∗

eip·xf̂p,

where p ∈ Λ∗ :=
(

2π
L Z
)2

and |Λ| = L2 is the size of the box. For any continuous function f on
R2 we have

lim
L→∞

1

|Λ|
∑
p∈Λ∗

f(p) =

∫
R2

dp

(2π)2
f(p).

After second quantization the Hamiltonian becomes

H =
∑
p

p2a†pap +
1

2|Λ|
∑
p,q,r

V̂ra
†
pa
†
qap−rap+r

for bosonic creation and annihilation operators ap, a
†
p and p ∈ Λ∗. The commutation relations

are

[ap, a
†
q] = apa

†
q − a†qap =

{
1 if p = q
0 otherwise.
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For the variational principle we pick the Ansatz

|Ψ〉 = exp

1

2

∑
k 6=0

cka
†
ka
†
−k +

√
N0a

†
0

 |0〉,
where |0〉 denotes the vacuum, ck are real numbers with |ck| < 1 and ck = c−k and N0 is a
positive real number. The goal is to minimize the energy

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

under the constraint of constant particle number

N =
〈Ψ|

∑
m∈Λ∗ a

†
mam|Ψ〉

〈Ψ|Ψ〉
.

This will motivate our choice of parameters ck and N0. Then we take the limit N,L→∞ of the
energy per particle e(ρ) = E/N while keeping the density ρ = N/L2 constant. We are interested
in the dilute limit, i.e. small density ρ.

2 Computation

2.1 Energy

The Ansatz for |Ψ〉 looks precisely the same as the trial state in [2]. However, the bosonic
creation operators and the vacuum have a different physical meaning since they describe a 2D
instead of a 3D system. Their algebraic relations are the same though. This is why the functional
expression for the energy is precisely the same as in the 3D case. From Lemma 2 and equations
(46) and (47) in [2] we have e(ρ) = eM + Ω2 + Ω4, where

eM =
1

2
V̂0ρ+

1

ρ|Λ|
∑
p 6=0

(p2 + ρV̂p)
e2
p

1− 2ep
+ ρV̂p

ep(1− ep)
1− 2ep

− V̂p
|Λ|

∑
r 6=0

e2
r

1− 2er

 ep(1− ep)
1− 2ep

+
1

2|Λ|
∑

r 6=0,±p
V̂p−r

ep(1− ep)er(1− er)
(1− 2ep)(1− 2er)

 , (1)

Ω2+Ω4 =
1

ρ|Λ|
∑
p 6=0

 1

2|Λ|
∑

r 6=0,±p
(V̂0 + V̂p−r)

e2
re

2
p

(1− 2er)(1− 2ep)
− V̂p + V̂0

|Λ|

∑
r 6=0

e2
r

1− 2er

 e2
p

1− 2ep

+
1

2|Λ|

(
ep(1− ep)

1− 2ep

)2
(
V̂0

1− 2ep + 4e2
p

(1− ep)2
+ V̂2p

1− 2ep + 2e2
p

(1− ep)2

)]
+

V̂0

2|Λ|

∑
p 6=0

e2
p

1− 2ep

2

and ep =
cp

1+cp
. The condition |cp| < 1 translates to ep ∈ (−∞, 1

2).

2.2 Choice of parameters

From the previous results [4] we know that the leading order term of e(ρ) should only depend on
the scattering length of the potential and not on other details of the potential. The scattering
length is defined as follows. For every R > R0 let us consider the zero energy scattering equation
−∆u+ 1

2V u = 0 on BR(0) with boundary condition u(x) = 1 for |x| = R. In Appendix C of [4]
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they show that a function β : R→ R determines the solution uR of the scattering equation for
any R through

uR(x) =
β(|x|)

ln(R/a)
,

where a is a constant depending only on the potential V . This constant a is the scattering
length. The function β is nonnegative, monotonically increasing and for r > R0 it is given by
β(r) = ln(r/a). Therefore, the scattering length a ≤ R0 and the scattering solutions satisfy
0 ≤ uR(x) ≤ 1.

We want to pick a particular R and relate V̂0 to the scattering length using uR. It turns
out that the choice R = R∗ := (cρ)−1/2 > R0 for some constant c > 0 will reproduce the
correct leading order term for e(ρ). Note that the average particle distance is of order ρ−1/2.
Intuitively, two-particle interactions should be important precisely up to this length scale. This
gives a physical motivation for the choice of uR. For |x| ≤ (cρ)−1/2 let

u(x) = uR∗(x) =
2β(|x|)
| ln(cρa2)|

.

We extend the domain of the scattering solution to the whole box. For |x| > (cρ)−1/2 we choose
u(x) = 1.

This function u obeys the modified scattering equation

−∆u+
1

2
V u =

2(cρ)1/2

| ln(cρa2)|
δ(r − (cρ)−1/2) (2)

With
w = 1− u, g = V u and f = V w

the Fourier transform of this equation is

− p2ŵp +
1

2
ĝp =

4π

| ln(cρa2)|
J0

(
p(cρ)−1/2

)
, (3)

where J0 denotes the Bessel function of the first kind. An important expansion parameter will
be b = 1/| ln ρa2|. Let b̃ = 1/| ln(cρa2)| = b+ ln(c)b2 + ln(c)2b3 +O(b4). Note that ĝ0 = 8πb̃ by
eq. (3). Since 0 ≤ w(x), u(x) ≤ 1 we have 0 < f̂0 ≤ V̂0 and 0 ≤ ĝ0 < V̂0. Moreover, thanks to
rotational symmetry ĝp, V̂p and f̂p only depend on |p|.

The full energy is very difficult to minimize. However, it is possible to minimize certain
terms in the energy explicitly. This motivates our choice of ep as will become clear later. We
choose the ep like in [2] as minimizer of

mp(ep) = p2 ep
1− 2ep

+ ρV̂p
ep

1− 2ep
− ρf̂pep

This results in

ep =
1

2

1−

(
1 + 2

ρĝp

p2 + 2ρf̂p

)1/2
 ≤ 0. (4)

The minimal value of mp is

mp =
1

2

[√
(p2 + 2ρV̂p)(p2 + 2ρf̂p)− (p2 + ρ(V̂p + f̂p)

]
.
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2.3 Estimates

Proposition 2.1. The Fourier transforms of V , f and g are uniformly Lipschitz continuous,
i.e. there is a constant C depending only on V such that for all p, r in Λ∗

|V̂p − V̂p−r| ≤ C|r|, |f̂p − f̂p−r| ≤ C|r|, |ĝp − ĝp−r| ≤ C|r|b̃. (5)

Therefore, there is a small δ depending on V such that for |p| ≤ δ

V̂0

2
≤ V̂p ≤ V̂0,

f̂0

2
≤ f̂p ≤ f̂0,

ĝ0

2
≤ ĝp ≤ ĝ0. (6)

Proof. We have |ĝp− ĝp−r| = |
∫
BR0

V (x)u(x)eip·x(eir·x−1)dx|, where BR0 is the disk with radius

R0 centered at zero. Since |(eir·x−1)| ≤ |r||x| and u(x) ≤ 2b̃ maxx∈BR0
β(|x|) the bound follows.

For V̂ and f̂ in the above equation we replace u by 1 or w ≤ 1, respectively.

Now we want to prove the analogon of Lemma 5 in [2].

Lemma 2.2. For ρ→ 0 the energy per particle is e(ρ) = eM + Ω2 + Ω4 = eM +O(ρb̃4), where

eM = 4πρb̃+
1

ρ|Λ|
∑
p 6=0

(p2ep + ρV̂p)
ep

1− 2ep
+

1

2|Λ|
∑
r 6=0

V̂p−reper +
ρ2

2
V̂pŵp

+O(ρb̃4).

Proof. First of all we rewrite V̂0 in the first term of (1) as V̂0 = ĝ0 + 1
|Λ|
∑

p V̂pŵp = 8πb̃ +

1
|Λ|
∑

p6=0 V̂pŵp+ V̂0ŵ0
|Λ| . The last term is negligible in the thermodynamic limit |Λ| → ∞, because

V̂0 and ŵ0 ≤ π(cρ)−1 are finite.
The functional expression for ep is the same as in 3D. The upper bounds for |ep| in equation

(49) in [2] rely only on uniform Lipschitz continuity of V̂ , ĝ and f̂ , 0 < f̂0 ≤ V̂0 and 0 ≤ ĝ0 < V̂0.
Since these conditions hold in 2D, we can use the upper bounds in (49). Also equations (50)
and (51) go through unchanged. In order to estimate Ω2 + Ω4 we follow the procedure in [2]. To
calculate the estimates for expressions (53) - (55) in 2D, we use that |ĝp| ≤ ĝ0 = 8πb̃, f̂0 ≤ V̂0

and
∫
|p|≥δ ĝp

dp
(2π)2

≤ g(0) = 2V (0)β(0)b̃. For the quantities in (53) - (55) this results in new

bounds
(53) ≤ Cρb̃2, (54) ≤ Cρb̃, (55) ≤ Cρb̃2.

The 2D analogon of bounds (58) - (62) therefore is

(58) ≤ CNρb̃4, (59) ≤ CNρb̃4, (60) ≤ CNρb̃4, (61) ≤ Cρb̃2, (62) ≤ Cρb̃2.

Thus, there is a constant C such that Ω2 + Ω4 ≤ Cρb̃4.
The next step is to replace the V̂p by V̂p−r in the second last term of (1). The difference can be

estimated as in eq. (63) in [2]. It adds a negligible error of O(ρ3/2b̃3) to eM . Following the calcu-
lation after (63) in [2], the last two terms in (1) combine to give the term 1

2ρ|Λ|2
∑

r,p 6=0 V̂p−reper

at expense of an error O(ρb̃4).

Like in the proof of Theorem 1 in [2] we use the identity

1

2
(e, V̂ ∗ e) =

1

2
(e+ ρŵ, V̂ ∗ (e+ ρŵ))− ρ(e, V̂ ∗ ŵ)− ρ2

2
(ŵ, V̂ ∗ ŵ)

and (3) to arrive at the analogon of (65) in [2]:

e(ρ) = 4πρb̃+
1

ρ|Λ|
∑
p 6=0

[
(p2ep + ρV̂p)

ep
1− 2ep

− ρ(V̂ ∗ ŵ)pep +
ρ2ĝp
4p2

(
ĝp − 8πb̃J0

(
p(cρ)−1/2

))]
+

1

2|Λ|
∑
r,p 6=0

V̂p−r(ep + ρŵp)(er + ρŵr) +O(ρb4). (7)

Calculating the first sum and estimating the second one, we obtain the following result.
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Theorem 2.3. The energy per particle in the thermodynamic limit is

e(ρ) = 4πρb+ 8πρb2(Γ +
1

2
(ln V̂0 − ln 2)) +R+O(ρb3), (8)

where Γ denotes the Euler–Mascheroni constant and

R =
1

2(2π)4ρ

∫
R2

dr

∫
R2

dp V̂p−r(ep + ρŵp)(er + ρŵr) ≤ Cρb2.

Proof. Let us first estimate R. Since
∣∣∣V̂p−r∣∣∣ ≤ V̂0, we have

R ≤ C

ρ

(∫
R2

ep + ρŵpdp

)2

.

From equation (3) we get ŵp =
ĝp
2p2
− 4πb̃

p2
J0

(
p(cρ)−1/2

)
. We will estimate the integral the

following way:∣∣∣∣∫
R2

ep + ρŵpdp

∣∣∣∣ ≤ ∫
p2≤4V̂0ρ

|ep|dp+

∫
p2≤4V̂0ρ

|ρŵp|dp

+

∫
p2≥4V̂0ρ

∣∣∣∣ep +
ρĝp
2p2

∣∣∣∣ dp+

∫
p2≥4V̂0ρ

∣∣∣∣∣4πρb̃p2
J0

(
p(cρ)−1/2

)∣∣∣∣∣ dp. (9)

Let us first take care of the terms with p2 ≤ 4V̂0ρ. Thanks to uniform Lipschitz continuity,
for ρ small enough we have infp(p

2 + 2ρf̂p) > ρf̂0 > 0 like in (45) in [2]. It follows that∣∣∣ ρĝp

p2+2ρf̂p

∣∣∣ ≤ g0
f0

= O(b̃). Thus |ep| = O(b̃) and the first term in (9) is bounded by Cρb̃ for some

constant C.
In the second term we replace ĝp by ĝ0 using uniform Lipschitz conitnuity. This gives a

negligible error of order O(ρ3/2b̃). The rest is

∫
p2≤4V̂0ρ

∣∣∣∣∣ρ ĝ0

2p2
− 4πb̃

p2
J0

(
p(cρ)−1/2

)∣∣∣∣∣ dp = 8π2ρb̃

∫ 2
√
V̂0/c

0

1− J0(x)

x
dx = Cρb̃.

For p2 > 4V̂0ρ we expand ep in ρĝp/p
2 to obtain

ep = − ρĝp

2(p2 + 2ρV̂p)
+O

((
ρĝp
p2

)2
)
.

Then ∫
p2≥4V̂0ρ

∣∣∣∣ep +
ρĝp
2p2

∣∣∣∣ dp ≤ ∫
p2≥4V̂0ρ

ρĝ0

2p2

∞∑
k=1

(
2ρV̂0

p2

)k
dp+O(ρb̃2) = Cρb̃+O(ρb̃2),

where we were able to swap integration and summation by Tonelli’s theorem. The last summand
in (9) is equal to 8π2ρb̃

∫∞
2
√
V̂0/c

J0(x)
x dx = Cρb̃. Therefore, we can bound (9) with Cρb̃ and

R ≤ Cρb̃2. Note that the next order error terms are O(ρb̃3).
Let us now compute the second sum in (7). Note that the choice of ep minimizes this term.

Using (2.2) and substituting |p| = √xρ the term is equal to

Q =
ρ

8π

∫ ∞
0

dx

[
F (x,

√
xρ)− 8πb̃ĝp

2x
J0

(√
x/c
)]

,
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where

F (x, p) =

√
(x+ 2f̂p)(x+ 2V̂p)− (x+ f̂p + V̂p) +

ĝ2
p

2x
.

The first step is to replace all the Fourier transforms at p by their respective values at 0. The
error I can be estimated with

I ≤ Cρ
∫ ∞

0
|F (x,

√
xρ)− F (x, 0)|dx+ Cρb̃

∫ ∞
0

|ĝp − ĝ0|
x

∣∣∣J0

(√
x/c
)∣∣∣dx,

To bound the second integral, we use |ĝp − g0| ≤ Cb̃
√
xρ for x ≤ ρ−1 and |ĝp − g0| ≤ Cb̃

for x ≥ ρ−1. Moreover, for x ≤ c we estimate
∣∣∣J0

(√
x/c
)∣∣∣ ≤ 1, while for x ≥ c we use∣∣∣J0

(√
x/c
)∣∣∣ ≤ Cx−1/4. With this the second integral is O(ρ1/4b̃).

For the first integral we proceed as in [2] after (70). The same argument as in 3D shows
there is a constant ε such that for x ≤ ερ−1 we have

∣∣F (x,
√
xρ)− F (x, 0)

∣∣ ≤ C|p|x−1(1 + x)−1.
Hence, ∫ ερ−1

0
|F (x,

√
xρ)− F (x, 0)|dx ≤ C√ρ arctan

(
ερ−1/2

)
≤ C√ρ.

Moreover, the same expansion as in 3D shows that for small enough ρ we have F (x, p) ≤ Cx−2

for x ≥ ερ−1 and all p. Hence,∫ ∞
ερ−1

|F (x,
√
xρ)− F (x, 0)|dx ≤ Cρ.

In total we have that I is of negligible order O(ρ5/4b̃2).
Next, we substitute y = x/8πb̃ and obtain Q = 8πρb̃2

∫∞
0 h(y, ρ)dy +O(ρ5/4b̃2), where

h(y, ρ) =

√√√√(y +
2V̂0

8πb̃

)(
y +

2V̂0

8πb̃
− 2

)
−

(
y +

2V̂0

8πb̃
− 1

)
+

1

2y

(
1− J0

(√
8πb̃y/c

))
.

Computing the integral and expanding yields

Q = 8πρb̃2
(

Γ +
1

2
(ln V̂0 − ln 2− ln c) +O(b̃)

)
.

Combining e(p) = 4πρb̃ + Q + R + O(ρb̃3) and using b̃ = b + ln(c)b2 + O(b3) we arrive at the
result (8).

3 Conclusion

Our result gives an upper bound on the ground state energy of a dilute Bose gas in 2D. To
leading order the bound is tight. However, our bound does not provide the expected negative
correction of order ρb2 ln(b) and directly gives a smaller correction of order O(ρb2). The main
difference between the computations in 2D and 3D comes from the different scattering solutions.

Remark 3.1. In our computation, we did not specify the constant c. The choice of this constant
may affect the result at order O(ρb2) through the term R.

Remark 3.2. With the additional assumption that V̂0 = νb for ν = O(1) in ρ we obtain
e(ρ) = 4πρb+ 4πρb2 ln b+O(ρb2). The same assumption is made in [3], where they also obtain
the 4πρb2 ln(b) correction with a calcuation similar to ours.

In our derivation, we chose the ep in such a way that we could find explicit expressions for
them. However, they do not minimize the full energy functional. It remains an open question
whether this method definitely fails in finding the negative correction of order ρb2 ln(b). Maybe
minimizing the full functional would give us the desired term.

6



4 References

[1] J. Andersen. Ground state pressure and energy density of an interacting homogeneous bose
gas in two dimensions. The European Physical Journal B, 28(4):389–396, Aug 2002.
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