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Abstract

We provide a better error estimate for the Lieb and Thomas lower
bound to the ground state energy of the Fröhlich polaron in the limit
of strong coupling, directly adapting a method recently used in the
proof of the ground state asymptotics of the confined model.

1 The Fröhlich Hamiltonian
When an electron is moving through a polarizable crystal, it starts to inter-
act with the emerging instanteneous dipoles. In the classical picture, this
creates a cloud of screening charge which is dragged along with the electron.
In the quantum point of view, this cloud gives rise to a quasi-particle called
the polaron, and the actual dipoles themselves amount to a phonon field
with a dispersion relation corresponding to the optical branch. This heuris-
tic picture leads to the model of a single quantum particle interacting with a
scalar boson field. Because the electrostatic potential from a dipole scales as
the square inverse distance from the dipole, in the simplest case of a linear
electron-phonon coupling, we have the following (formal) Hamiltonian

H = p2 + N−
√
α

∫
Ω
dy

1
|x− y|2

a†y + h.c., (1)

acting on L2(Ω) ⊗ F , where F is the bosonic Fock space over L2(Ω). Here
Ω ⊂ R3 is the region occupied by the crystal, x ∈ Ω is the electon’s coordi-
nate, p2 is the electron’s kinetic energy operator, N is the number operator
on F , and the a†y are the bosonic creation operators (operator-valued dis-
tributions) on F creating a dipole at y ∈ Ω, and α > 0 is the coupling
constant. In the generic case, one is concerned with Ω = R3 and passes to
the Fourier space, in which the so-called Fröhlich Hamiltonian arises

H = p2 + N−
√

α

(2π)3

∫
R3
dk

1
|k|
eikxak + h.c., (2)
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with [ak, a†k ′] = δ(k − k′), and the k’s label the momentum modes of the
phonon field.

In this work, we will be concerned with the question of the ground state
energy of (2), E(α), in the case of the strong coupling limit, i.e. α �
1. Despite the fact that (2) has been proposed almost a century ago, the
question of the ground state energy asymptotics is still an object of intensive
studies when it comes to proving rigorous statements. It has been first
suggested in calculations by Pekar and Feynman and then proven by Donsker
and Varadhan that lim

α→∞
E(α)/α2 = ep, where ep ≈ −0.109 is the Pekar

constant. Then, in 1997 Lieb and Thomas have given a very nice proof of a
lower bound to the ground state energy in this form, which came along with
the first known error estimate, which scales as α9/5. This estimate is far away
from the conjectured behaviour of the first order correction to the ground
state energy, which should reflect the effects of quantum fluctuations of the
phonon field on the energy and is believed to be smaller than the leading
term by a factor of α−2. This has recently been proven rigorously by Frank
and Seiringer for the case of the confined model, that is, for the case Ω
being an open, bounded subset of R3 with a sufficiently regular boundary,
and under some natural assumptions on the Pekar functional, an object
which naturally appears in the discussion. These assumptions have been
recently verified for the case of Ω being a ball in R3 by Feliciangeli and
Seiringer.

The proof of the conjecture about the next order term in the functional
form of the ground state energy in the case of Ω = R3 remains an open
problem, however. While in our work are still far away from providing that
proof, we at least slightly improve the error bound of Lieb and Thomas,
using some techniques that were developed by Frank and Seiringer for the
confined case, but which can be (in contrast, however, to some of their
results which do rely on the boundedness of Ω) easily adapted to Ω = R3.

1.1 Notation and units

We mentioned that the problem is physically linked to quantum fluctua-
tions of the phonon field because the Pekar calculation, and also the Lieb
and Thomas proof relies on a c-number substitution in place of the non-
commuting creation and annihilation operators. The subleading term should
hence reflect the effect of the a, a† being actually non-commuting objects.
This fact of itself motivates our choice of units, in which the α is incorpo-
rated into the length scale of the problem, and effectively into the creation
and annihilation operators. These operators, for f, g ∈ L2, commute to

[af , a†g] = (f, g)
α2 , (3)
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explicitly displaying the relation between the semi-classical and strong cou-
pling limits. The Hamiltonian is therefore unitarily equivalent to α2H with

H = p2 + N− (2π)−3/2
∫
R3
dk

1
|k|
eikxak + h.c; (4)

with p2 = −4R3 being the Laplace operator acting on the electronic coordi-
nates. For some orthonormal basis of L2(R3), N =

∫
R3 a

†
kakdk =

∑
i a
†(φi)a(φi)

with spectrum { i
α2 }∞i=0. It is understood that in general k stands for the

phonon momentum variable and x for the electron’s position. We de-
note the characteristic function of a subset A ⊂ R3 by χA. For h(k)
being an L2-function of the phonon variables, we denote hx = h(k)eikx

and a(fx) = (2π)−
3
2
∫
dkf(k)eikxak and similarly for a†(fx). Even though

v := |k|−1 and wx := vxχ|k|≥K for any K > 0 are not in L2, we will continue
to use this notation for the corresponding operators which appear in the
definition of H. Actually, the fact that vx /∈ L2(R3) causes concern about
the domain of H, in particular whether it is densely defined ot not. This
question was tackled by Griesemer and Wünsch in 2016, and some ideas used
in this work were first developed there. Finally, we use the now standard no-
tation that a . b means that a 6 Cb for some constant C > 0 independent
on the parameters on which b or a possibly depend. Having established the
notation and conventions, we are now free to pass to the section containing
the main ideas and results.

2 Auxiliary considerations, main result and proof
strategy

For K > 0, write the Hamiltonian as

H = p2 + N− + N+ − V+ − V− (5)

with N− =
∫
|k|<K a

†
kakdk, N+ = N − N−, V+ = a(wx) + a†(wx) and V− =

a(vx−wx)+h.c.. Denote then HK := p2 +N−−V−. Since we are interested
in the lower bound, we can drop the N+ due to its positivity. The paper of
Lieb and Thomas (in fact, only sections II-IV) can be applied to provide an
estimate on HK , which we will state in the form of a theorem.

Theorem 2.1. For any E > 0, P > 0 and K > 0 and δ > 0 sufficiently
small, we have

inf specHK − ep > c1δ − E + c2
P 2K

δE
+ c3

K3

α2P 3 (6)

where the ci’s are negative constants independent of α.

The method used in the proof consists of the following steps:
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1. First, one localizes the electron in a cube of side length ∼ E−1/2. By
the IMS localization formula, this gives rise to an error of order E, as
given above.

2. The phonon modes are already localized into a ball of radius K, which
is later divided into cubes of side length P , called blocks, and labelled
by Bi. Within each block, one chooses some arbitrary point kB. Using
|eikx − eikBx| 6 |(k − kB)x| . PE−1/2 and the obvious positivity of
(
√
δa†k − δ−1/2|k|−1(eikx− eikBx))(hc) for any δ, one replaces HK with

H ′K = p2 +
∑
i

∫
Bi
dk(1− δ)a†kak + ake

ikBx

|k| +hc.) at the energy penalty
∼ P 2K

δE .

3. One introduces ABi =
∫
Bi
dkak|k|−1/

√∫
Bi
dk|k|−1 with A†BiABi 6∫

Bi
a†kakdk . Then by replacing ak with AB in the Hamiltonian, one

can apply a coherent-state Ansatz and choose kB optimally in each
block. This directly leads to the Pekar functional (with coefficients
altered by ∼ δ), whose minimization leads to ep, as desired. The
− K3

α2P 3 term stems from the application of the coherent state ansatz,
which replaces A†BAB with |A|2 − 1/α2, where A is the corresponding
c−number substitute, and the α−2 term is rooted in the commuta-
tor. This −α−2 term appears one per block, and the total number of
blocks is of order K3/P 3. In this way, we arrive at the statement of
the Theorem.

We are therefore left with the interaction term V+, which describes the in-
teraction of the electron with high-momentum modes of the phonon field.
Giving an estimate to this part of the energy is essential both from the
physical and mathematical perspective. In fact, it is the V+ which contains
the part of vx not in L2, raising problems concerning the domain of H. On
the other hand, physically, one expects that the electron has to be localized
on the lengthscale of the wavelength of the phonon mode to effectively in-
teract with it. This localization increases the kinetic energy, which, by the
uncertainty principle, becomes larger with the localization accuracy. It is
therefore expected that the high momentum modes contribute only negligi-
bly to the ground state energy.
Assuming that the effect of the interaction with high-momentum phonon
modes decays according to a power-law decay in the cut-off parameter K,
we have now the simple

Theorem 2.2. Assume that inf specH > inf specHK − c
Kβ holds for some

β > 0 and c > 0. Then

inf specH− ep & −αε (7)

with ε = −4β
11β+9 and α sufficiently large.
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Proof. The proof is elementary. Invoking Theorem 2.1, we get for any E >
0, P > 0,K > 0 and δ > 0 sufficiently small,

inf specH− ep > c1δ − E + c2
P 2K

δE
+ c3

K3

α2P 3 − cK
−β. (8)

Now, we optimize over E,P,K and δ, assuming that K ∼ ακ, P ∼ αp, E ∼
αε and δ ∼ αd. Since the function in question behaves like −ya − y−b for
y ∈ {E, δ,K, P} for the relevant exponents a > 0, b > 0, at the optimum
we have that ya−1 ∼ y−b−1. We conclude that at the optimum, every term
is of the same order. After imposing this condition, we get a set of linear
equations on the exponents

−βκ = −2− 3κ− 3p = d = κ+ 2p− d− ε = ε.

It yields ε = −4β
11β+9 , and, consistently, that δ � 1 and K � 1 if α� 1.

Remark 1. The original method of Lieb and Thomas, based on the Lieb-
Yamazaki estimate, leads to β = 1, which gives ε = −1/5. We will improve
the ultraviolet regularization scaling law to β = 5/2, yielding ε = −20/73,
which is slightly better, although still by a factor α126/73 larger than ex-
pected.

Remark 2. In the limit where β becomes arbitrarily large, the best estimate
we can get is −4/11, effectively squaring the Lieb and Thomas correction
but still being off the mark by α18/11. This is the best one can do by using
a power-like estimate on the interaction with high-momentum modes and
combining it with the Lieb and Thomas method. To attack the ground state
energy asymptotics in full space, we need additional ideas.

Remark 3. In the case of the confined model, the IMS localization error
disappears as the electron is localized in a fixed volume Ω from the very
beginning. Then repeating the remaining steps, we have

inf specH− ep > c1δ + c2|Ω|2/3
P 2K

δ
+ c3

K3

α2P 3 − cK
−β. (9)

Performing the optimizing procedure now, we get that the error term scales
as αεΩ with εΩ = −4β

8β+9 . This gives asymptotically an error of order α−1/2;
the original LT ultraviolet regularization leads to α−4/17 whereas β = 5/2
yields α−20/58. Confining the electron makes the LT result closer to the
expectations, but is still not sufficient.

As announced, we shall improve the (unconfined) error bound by proving
that one can take β larger than unity. The essential technical result is hence
the following.
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Theorem 2.3. For any K > 0 and α� 1, we have

inf specH ≥ inf specHK − const.(K−5/2 + α−1K−3/2 + α−2K−1). (10)

Taking now K ∼ ακ with 0 < κ < 1, which is consistent with the state-
ment and proof of Theorem 2.2, we see that the leading term is K−5/2.
Therefore, given the above considerations, it directly leads to the main re-
sult:

Corollary 2.4. For the Fröhlich Hamiltonian in free space, we have the
following lower bound for the ground state energy asymptotics

inf specH > ep − const.α−20/73 (11)

for α� 1.

2.1 Overview of the proof

As we see, the main point is to provide a power-like ultraviolet regularization
estimate. Recall that the ultraviolet cutoff problem in the original proof of
Lieb and Thomas was handled using the identity

−V+ =
∑
j

[
pj , a

(
kj
|k|2

wx

)
− h.c.

]
. (12)

Using this, one readily applies the Cauchy-Schwarz inequality to get the
bound

−V+ & − c̃1
K
p2 − N+ −

3
2α2 (13)

for c̃1 > 0. The cutoff thus gives rise to an error of order K−1, which effec-
tively sets the scale of the entire error estimate. The method of Frank and
Seiringer, which essentially amounts to replacing 1

kvx →
1
k3 vx and differen-

tiating it three times, enables one to replace the above bound by

−V+ & −
(
p2 + N + 1

)2
K−5/2; (14)

which goes along with a better error in the cutoff parameter ∼ K−5/2,
but one is faced with the appeareance of the square of the non-interacting
Hamiltonian. This can be handled, however, by an appropriate unitary
transformation. It effectively replaces (14) with

V+ & −(H2 + C2)K−5/2 (15)

for some C > 0, which can be chosen to be independent of α. Now, if Ψ is a
state in the domain of H such that (Ψ,HΨ) is sufficiently close to inf specH,
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then (Ψ,H2Ψ) can be chosen to be of order e2
p, independently of α. This

observation immediately leads to

inf specH > inf specHK − const.K−5/2, (16)

and the way towards the final estimate is now cleared: we can apply the
remaining steps of the Lieb and Thomas proof to HK , now equipped with a
better error estimate for the UV cut-off, which scales as K−5/2 and not as
K−1 as before.

The remaining sections are devoted to the proof of Theorem 2.3. We
directly adapt the results of Frank and Seiringer, which were originally ob-
tained for the confined model, to the case of Ω = R3. This actually requires
only minor modifications, which in many cases amount merely to notational
adjustments. In fact, most of the material is actually easier to handle in
the unconfined case. However, we work it out here in detail to make the
presentation self-contained. The section is split into two parts: first, we
demonstrate the triple commutator method and a subsequent proof of (14).
Secondly, we apply the Gross transformation to the original Hamiltonian,
estimate the additional terms which arise, and finally prove (15). As already
pointed out, this immediately yields the main result, Corollary 2.1, thus es-
tablishing a new error estimate on the subleading term in the lower bound
to the ground state energy of the strongly-coupled polaron in free space.

3 The ultraviolet cutoff

3.1 The triple Lieb - Yamazaki bound

As announced, this section gives rise to the following

Proposition 3.1. For any K > 0 and α large enough, we have

−V+ & −
(
p2 + N + 1

)2 (
K−5/2 + α−1K−3/2

)
. (17)

Proof. Clearly, with p = −i∇x,

V+ =
∑
rst

[
pr,

[
ps,

[
pt, a

†
(
kskrkt
|k|6

wx

)
− a

(
kskrkt
|k|6

wx

)]]]
. (18)

It is convenient to rewrite the above commutator as a multi(anti)linear ex-
pression in the p’s and Brst ≡ a†

(
kskrkt
|k|6 wx

)
− a

(
kskrkt
|k|6 wx

)
, which makes it

ready for a direct application of the Cauchy-Schwarz inequality in the form

AC + C†A† 6 εAA† + 1
ε
C†C (19)
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for any A,C and arbitrary ε > 0. We get

V+ =
∑
rst

(prps[pt, Brst] + [pt, Brst]prps)− 2
(
prpsBrstpt + ptB

†
rstprps

)
.

(20)
The second term is obtained by renaming the indices, which is possible by
the invariance of Brst under this operation. This term is bounded by

−
(
prpsBrstpt + ptB

†
rstprps

)
6 εp2

rp
2
s + 1

ε
ptB

†
rstBrstpt (21)

for any ε > 0. On the other hand, for any Ψ ∈ F , f ∈ L2 and B =
a†(f)− a(f),

(Ψ, B†BΨ) = ||BΨ||2 6 2(||a(f)Ψ||2 + ||a†(f)Ψ||2)

≤ 4(Ψ, a†(f)a(f)Ψ) + 2(Ψ, [a(f), a†(f)]Ψ) 6 ||f ||22(Ψ, 4N + 2
α2 ,Ψ).

Using this, we obtain

B†rstBrst . K−5(4N + 2
α2 ). (22)

In exactly the same way one can handle the first term; by defining
∑
t[pt, Brst] ≡

Crs we get for any µ > 0 that this term is bounded by µp2
sp

2
r + 1

µC
2
rs, and

C2
rs 6 4a†

(
krks
|k|4

wx

)
a

(
krks
|k|4

wx

)
+ 2
α2 ||

krks
|k|4

wx||2. (23)

However, here the norm scales as K−3/2, which is not dangerous in the term
stemming from the commutator, as it gets multiplied by α−2. The bare term
has to be improved, however, if we wish to maintain the better K−5/2 decay
rate. This can be done using the following lemma, which will be useful also
afterwards.

Lemma 3.2. Let f ∈ (L2∩L∞)(R3). Then a†(fx)a(fx) 6 (3(2π)2/3‖f‖4/3∞ ‖f‖2/32 )p2N.

Proof. It is enough to restrict ourselves to the one-particle sector of the Fock
space C⊗ L2(R3) ' L2(R3). Then for all Ψ ∈ L2(R3)⊗ L2(R3),

||a(f)Ψ||2 =
∫
dp|

∫
dkf(k)Φ(p− k, k)|2; (24)

here, we have written down the integral in the x−space, absorbed the eikx
factor into the Ψ, and used the Parseval’s identity (Φ stands for the Fourier
transform of Ψ(x, k) regarded as a function of x). Now we use the CS
inequality to bound the above by

||a(f)Ψ||2 6
∫
dp

(∫
dk
|f(k)|2

|k − p|2

)(∫
dk|k − p|2|Φ(p− k, k)|2

)
6

(
sup
q

∫
dk
|f(k)|2

|k − q|2

)
(Ψ, p2NΨ).

(25)
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The prefactor is now estimated directly:∫
dk|f(k)|2|k−q|−2 =

∫
B(q,R)

dk|f(k)|2|k−p|−2+
∫
Bc(q,R)

dk|f(k)|2|p−k|−2 ≤ ||f2||∞4πR+ ||f ||
2
2

R
;

(26)
where B(x,R) is the ball of radius R centered at x ∈ R3. Optimizing over
R, we arrive at the statement of the Lemma.

Using the lemma for fx = krks
|k|4 wx we get a†

(
krks
|k|4 wx

)
a
(
krks
|k|4 wx

)
.

K−5p2N since in this case ‖f‖∞ ∼ K−3 and ‖f‖2 ∼ K−3/2. We have thus
gained an additional power in the decay rate at the cost of the electron’s
kinetic energy. This conforms with the physical interpretation of the cutoff
decay rate given in the introduction.
Finally, after taking ε = 2K−5/2, µ = 6(K−5/2 +2α−1K−3/2), summing over
the indices, and combining the above inequalities we get

V+ . K−5/2(|p|4 + 3p2(N+ 2α−2)) + (K−5/2 +α−1K−3/2)(|p|4 + p2N+ 1/2).
(27)

Since p2 and N commute, are positive and self-adjoint, we can treat the
above operator term as an ordinary polynomial, which can be bounded by
the one given in the statement of the proposition for α sufficiently large.

3.2 The Gross transformation

The operator inequality given in Proposition 3.1 is not sufficient for our
purpose, as in principle (Ψ, (p2 + N)2Ψ) is infinite if Ψ is in the domain of
H. Our goal will be to replace the non-interacting Hamiltonian there by
H. Then also (16) will be true. We will achieve this result by (15). To get
there, we need

Proposition 3.3. Let Ψ be in the domain of p2 + N, being a dense subset
of L2(R3)⊗F . Then for any ε > 0 there exist constants K ′ > 0, C > 0 and
a unitary transformation UK′,α, parametrized by K ′ and α, such that

(1+ε)||(p2+N)Ψ||+C||Ψ|| > ||U †K′,αHUK′,αΨ|| > (1−ε)||(p2+N)Ψ||−C||Ψ||,
(28)

assuming that α is sufficiently large.

Proof. Consider some function of the phonon variables, f , such that fx ∈
L2(R3) and (fx, pfx) =

∫
k|f(k)|2dk = 0. Take

U = eα
2(a(fx)−a†(fx)). (29)

Using the easy to prove formulae, valid for any h s.t. (h, fx) <∞,

UahU
† = ah + (h, fx) Ua†hU

† = a†h + (fx, h), (30)

9



as well as

[p, U ] = (−i∇xU), (−i∇xa)(fx) = −a(pfx), (−i∇xa†)(fx) = a†(pfx)
(31)

and the formula

deA(x)

dx
=
∫ 1

0
etA(x)A′(x)e(1−t)A(x)dt (32)

one finds

UHU † = p2 + N + α4(a†(pfx) + a(pfx))2 + 2α2pa(pfx) + 2α2a†(pfx)p+
+a(α2p2fx + fx − vx) + a†(α2p2fx + fx − vx) + ||fx||22 − 2Re(vx, fx) ≡ p2 + N + Ṽ ,

we see that the proposition will be true if we find fx and C such that

||ṼΨ|| 6 ε||(p2 + N)Ψ||+ C||Ψ||

for all Ψ ∈ D(p2 + N). Take any K ′ > 0 and consider fx = χ|k|>K′eikx

|k|(α2|k|2+1) with

α2p2fx + fx − vx = −χk6K
′eikx

|k|
≡ gx.

Writing down the relevant integrals, we readily have the following estimates:

||gx||22 . K ′, ||fx||22 . α−4K ′−3 (33)

and
(vx, fx) . α−2K ′−1, ||pfx||22 . α−4K ′−1. (34)

We are now able to estimate every term in Ṽ . We have, by similar compu-
tations as in Proposition 3.1

||(a(gx)+a†(gx))Ψ|| 6 ||gx||2
∣∣∣∣∣∣∣∣√(N + α−2)Ψ

∣∣∣∣∣∣∣∣ . δ||(N+α−2)Ψ||+δ−1K ′||Ψ||
(35)

for any δ > 0. Similarly,

α4||(a†(pfx) + a(pfx))2Ψ|| . K ′−1||(N + α−2)Ψ||. (36)

The cross-terms give, by pafa†fp . p2(N+α−2)||f ||22 . (p2 +N+α−2)2||f ||22,

α2||a†(pfx)pΨ|| . K ′−1/2||(p2 + N + α−2)Ψ||. (37)

The term α2pa(pfx) requires a bit more work. "Commuting the p through",
we get that it can be bounded using the former estimate, and an estimate
on α2a(p2fx). p2fx /∈ L2, however, so we split it as

α2p2fx = gx − fx + eikx
(

1
|k|
− 1√

K ′2 + |k|2

)
+ eikx√

K ′2 + |k|2
. (38)
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Then we estimate term by term. The gx and fx estimates are exactly
as above, the operator estimates included. Clearly, jx := |k|−1 − (K ′2 +
|k|2)−1/2 6 K ′|k|−1(K ′2 + |k|2)−1/2 with the square of the L2 norm of the
latter bounded by ∼ K ′. We are left with an estimate of the last term. We
can use the Cauchy-Schwarz inequality in the same way as in Lemma 3.1
and estimate

||a((K ′2 + |k|2)−1/2eikx)Ψ|| 6

√√√√(sup
p

∫
dk

1
(K ′2 + |k|2)|k − p|2

)
(Ψ,Np2Ψ).

(39)
The integral can be shown to be bounded by ∼

∫
dk(K ′2 + |k|2)−1|k|−2 ∼

K ′−1. Indeed, we split it into an integral over the set Ap := {k : |k −
p|2 ≥ |k|2} and its complement. On Ap, the bound holds clearly; on the
complement, we bound it by

∫
dk(K ′2 + |k − p|2)−1|k − p|−2 and translate

the coordinate system. Consequently,

||a((K ′2 + |k|2)−1/2eikx)Ψ|| . K ′−1/2||(p2 + N)Ψ||. (40)

The remaining estimates are

||a(gx)Ψ|| . K ′1/2||N1/2Ψ|| 6 δ||NΨ||+ δ−1K ′||Ψ||, (41)

||a(fx)Ψ|| . α−2K ′−3/2||
√
NΨ|| 6 δ||NΨ||+ δ−1α−4K ′−3||Ψ|| (42)

and
||a(jx)Ψ|| . δ||NΨ||+ δ−1K ′||Ψ|| (43)

so that remaining part of a(p2fx) is bounded by δ||NΨ||+δ−1K ′(1+ 1
K′4α2 )||Ψ||.

Putting it all together we see that the p2 + N terms are multiplied by
δ,K ′−1/2,K ′−1, and the bare Ψ terms -by δ−1K ′(2 + K ′−4α−2). It there-
fore suffices, assuming α � 1, to take δ ∼ ε and K ′ ∼ ε−2, and hence also
C ∼ ε−1.

Equipped with the last statement, which establishes a link between the
domains of the interacting and non-interacting Hamiltonians, we now use
the obvious fact that A 6 0 =⇒ BAB† 6 0 for any B . Then from
Proposition 3.1. we have

−UV+U
† & −U(p2 + N)2U †

(
K−5/2 + α−1K−3/2

)
. (44)

For the choice of fx as in Proposition 3.3, we have U †V+U = V+ + (wx, fx)
as the inner product is finite. Now, it is easy to see that (wx, fx) . α−2K−1

for the chosen K ′ and any K > 0. Combining this with Proposition 3.3 by
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taking Ψ = U †Ψ′ for Ψ′ in the domain of H, as well as some ε ∈ (0, 1), we
conclude U(p2 + N)2U † 6 2

(1−ε)2 (H2 + C2) and hence

−V+ & −(H2 + C2)
(
K−5/2 + α−1K−3/2

)
− α−2K−1. (45)

We can now always choose Ψ′ such that both (Ψ′,H,Ψ′) is arbitrarily close
to inf specH and (Ψ′,H2Ψ′) can be bounded by a constant independent of
Ψ′ and α. Choosing such Ψ′, we have finally

inf specH > inf specHK − const.(K−5/2 + α−1K−3/2 + α−2K−1) (46)

This is precisely the result that has been claimed.
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