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The Heisenberg Ferromagnet

The Heisenberg ferromagnetic spin chain hamil-
tonian is

HN = −

N∑
n=1

~S n · ~S n+1 +
N
4

(1)

with S j
n = σ

j
n/2. It commutes with

[HN , S j] = [HN , S ±] = 0 (2)

and therefore the eigenvalues are degenerated.
The ground state is

⊗N
n=1 | ↑〉.

The Bethe Ansatz

We make the ansatz

ψ =
∑

m1<...<mr

a(m1, . . . ,mr)S −m1
· · · S −mr

Ψ0. (3)

This leads to the equations

Ea(m1, . . . ,mr) +
1
2

∑
P∈A

[a(Pm1, Pm2, . . . , Pmr)

− a(m1, . . . ,mr)] = 0 (4)

and the equation of the periodic boundary condi-
tions

a(m1, . . . ,mr) = a(m2, . . . ,mr,m1 + N). (5)

The r = 2 solutions

For two spins pointing down we make an ansatz

a(m1,m2) = Aeim1k1+im2k2 + A′eim1k2+im2k1 . (6)

Writing A = eiθ/2 = Ā′ we get the condition

2 cot
θ

2
= cot

k1

2
− cot

k2

2
(7)

and from the periodic boundary conditions

Nk1 − θ = 2πλ1

Nk2 + θ = 2πλ2

for λ1, λ2 = 0, . . . ,N − 1. The energy is then

E = 2 − cos(k1) − cos(k2) (8)

Figure 1: An overview about the solutions for dif-
ferent λ1, λ2. In the diagonal one can see the com-
plex bound states. The states in the bottom line
are the effective one spin states and in between
there are real states. (Karbach and Müller 04)

Real solutions The expression k =
∑

j k j =

2π
∑

j λ j/N is not dependent on θ and therefore
k1 can be determined by solving the equation

2 cot
(

Nk1

2

)
= cot

(
k1

2

)
− cot

(
k − k1

2

)
. (9)

Interchanging λ1, λ2 gives the same solution so
we choose λ1 ≤ λ2. For each λ1 ≤ λ2 − 2 we
can find real solutions and there are

N−1∑
λ2=2

(λ2 − 1) =

(
N − 1

2

)
(10)

of them.

Potential bound states We use a complex
ansatz k1 = u + vi = k̄2 and get u = k

2 and from
equation (9)

cos u sinh(Nv) = sinh((N − 1)v)

+ cos(Re θ) sinh v (11)

and
vi = θ + π(λ1 − λ2). (12)
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Because Re θ ∈ {π, 0} we get solutions for

0 < cos u < 1 if λ1 = λ2

0 < cos u < 1 −
2
N

if λ1 = λ2 − 1

Further cos u = 1 ⇒ u = 0 ⇒ v = 0 is also
a valid solution which corresponds to the state
S −S −ψ0.

Other solutions For the case cos u > 1 − 2
N a

new real solution appears in (9).
Further there exists a solution which is for-

mally u = π/2 + i∞. This means

a(m1,m2) = (−1)m1δm1+1,m2 . (13)

Counting the solutions The condition 0 <

cos u ≤ 1 leads to N − 2 solutions. Together we
get

#EV =

(
N − 1

2

)
︸  ︷︷  ︸

waves

+

possible bound states︷  ︸︸  ︷
(N − 2) + 1︸︷︷︸

u=π/2

=

(
N
2

)
(14)

which is the desired number of states.

Summary of solutions

λ1 = λ2 bound states

λ1 = λ2 − 1
〈 cos u > 1 −

2
N

spin waves

cos u < 1 −
2
N

bound states

λ1 < λ2 − 1 spin waves

States for small energies

For energies E ∼ N−2 we get

|λ1,2| ≤ c
√

EN + 1/2 (15)

for a c > 0 if we now allow λ1,2 to take the values
−N/2, . . . ,N/2−1. For bound states and E ∼ N−2

we get the estimate

v ∼ N−3/2. (16)

It is possible to show that

|E0
λ1,λ2
− Eλ1,λ2 | ≤ c(E3/2 + N−3) (17)

with c > 0 and

E0
λ1,λ2

=
∑

j

(
1 − cos

(
2πλ j

N

))
(18)

Bethe Ansatz for r > 2

We make the ansatz

a(m1, . . . ,mr)

=
∑
P∈S r

exp

i r∑
j=1

kP jm j +
i
2

∑
i< j

θPi,P j

 (19)

This leads to the equations

2 cot
θi, j

2
= cot

ki

2
− cot

k j

2
i , j

Nki −
∑
j,i

θi, j = 2πλi

with θi, j = −θ j,i and i = 0, . . . , r. The Energy is
then

E =
∑

j

(
2 − cos(k j)

)
(20)

Rapidities and String states Defining Λ j =

cot(k j/2) we transform the system to(
Λ j + i
Λ j − i

)N

=

r∏
i, j

Λ j − Λi + 2i
Λ j − Λi − 2i

. (21)

For two particles with Im Λ j > ε we get in the
thermodynamic limit N → ∞ that the left side
diverges. To get that the right side diverges we
need |Λ1 − Λ2| → 2π. A similar statement works
for Im Λ1 < 0. In general there exist states

Λ
n, j
α = Λn

α + i(n + 1 − 2 j) + O(exp(−δN))

with j = 1, 2, . . . , n, δ > 0. These are not com-
plete for the Heisenberg magnet but they are com-
plete for a system called the Heisenberg XXZ
chain defined by

H∆
N =

N∑
j=1

S 1
nS 1

n+1 + S 2
nS 2

n+1 + ∆S 3
nS 3

n+1 (22)

with ∆ , 1,∆ > 0.
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The Algebraic Bethe Ansatz

We generalize the Bethe Ansatz and in particular
we shall not rely on intelligent guessing for the
eigenfunctions. We define the Lax operator on
hn ⊗ ka with ka = hn = C2.

Ln,a(λ) = λI ⊗ I +
i
2

∑
α

σα × σα. (23)

Using the permutation operator Pa ⊗ b = b ⊗ a
defined by P = (I ⊗ I +

∑
σα ⊗ σα) /2 we can ex-

press this by

Ln,a(λ) =

(
λ −

i
2

)
In,a + iPn,a. (24)

We define the transport along the chain as

Ta(λ) = LN,a(λ) · · · L1,a(λ) =

(
AN(λ) BN(λ)
CN(λ) DN(λ)

)
.

We can prove the Fundamental Commutation Re-
lation (FCR)

Ra1,a2(λ − µ)Ta1(λ)Ta2(µ)

= Ta2(µ)Ta1(λ)Ra1,a2(λ − µ) (25)

with Ra1,a2(λ) = λIa1,a2 + iPa1,a2 . In particular this
shows that [F(λ), F(µ)] = 0 with

F = tra Ta(λ) = 2λN +

N−2∑
l=0

Qlλ
l (26)

creates a family of N−1 commuting operators. In
particular

H = −
i
2

d
dλ

ln F(λ)
∣∣∣∣∣
λ=i/2

+
N
2
. (27)

So we just have to determine the eigenvalues of
F.

Commutation Relations The idea is to use B
as raising and C as lowering operator to create the
eigenstates. We get form the FCR

[B(λ), B(µ)] = 0

A(λ)B(µ) =
λ − i
λ

B(µ)A(λ) +
i
λ

B(λ)A(µ)

D(λ)B(µ) =
λ + i
λ

B(µ)D(λ) −
i
λ

B(λ)D(µ)

The ground state First we notice that for ωn =

| ↑〉 we get

Ln(λ)
(
ωn

ωn

)
=

(
λ + i

2 ∗

0 λ − i
2

) (
ωn

ωn

)
(28)

and in particular

T (λ)
(
Ω

Ω

)
=


(
λ + i

2

)N
∗

0
(
λ − i

2

)N

 (ΩΩ
)
. (29)

We define the ground state as Ω ⊗ (1, 1) with Ω =⊗N
n=1 ωn and we get C(λ)Ω = 0. We define the

state
Φ({λ}) = B(λ1) · · · B(λr)Ω. (30)

With the commutation relations for A, B we get

A(λ)Φ({λ}) =

r∏
k=1

λ − λk − i
λ − λk

(
λ +

i
2

)N
Φ({λ})

+

r∑
k=1

Nk(λ, {λ})B(λ1) · · · B̂(λk) · · · B(λr)Ω

where B̂ means that the term is missing.
We get a similar term for the expression

D(λ)Φ({λ}). If we want the second terms to can-
cel we get precisely the Bethe Ansatz Equations
(21) with Λ = λ/2. The eigenvalues F(λ)Φ({λ}) =

Λ(λ, {λ})Φ({λ}) take the form

Λ(λ, {λ}) =

(
λ +

i
2

)N r∏
j=1

λ − λ j − i
λ − λ j

+

(
λ −

i
2

)N r∏
j=1

λ − λ j + i
λ − λ j

In particular we see that the second product van-
ishes for λ = i/2. This ensures that the energies
get their additive form.
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