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The Heisenberg Ferromagnet

The Heisenberg ferromagnetic spin chain hamil-
tonian is

(1)
n=1
with § 2 = 0'{; /2. It commutes with
[Hy.S/] = [Hy,5*]1=0 2)

and therefore the eigenvalues are degenerated.
The ground state is ®nN:] [ T).

The Bethe Ansatz

We make the ansatz

v= S am,....m)S;, S

mi<...<my

3)
This leads to the equations

1
Ea(my,...,m,) + = Z[a(Pml, Pmy, ..., Pm,)
2
PeA
—a(my,..

Lmp)] =0 (4)

and the equation of the periodic boundary condi-
tions

.,my,my + N).

a(my,...,m;) =almy,.. 5

The r = 2 solutions

For two spins pointing down we make an ansatz

a(ml, mz) — Aeim1k1+im2k2 + A'eim1k2+im2k1 ) (6)
Writing A = ¢/ = A’ we get the condition
4 kl k2
2cot — = cot — — cot — 7
€0 2 o 2 co 2 ( )

and from the periodic boundary conditions

Nk — 0 =244
Nky + 6 =211,
for 41,45 =0,...,N — 1. The energy is then
E =2 — cos(ky) — cos(kr) (8)

Al + Ao = 3N/2

M4A=N

A+ Ao = N2

Figure 1: An overview about the solutions for dif-
ferent A1, 4. In the diagonal one can see the com-
plex bound states. The states in the bottom line
are the effective one spin states and in between
there are real states. (Karbach and Miiller 04)

Real solutions The expression k = };k; =
27 3 A;/N is not dependent on 6 and therefore
k1 can be determined by solving the equation

Nk, _ & _ k—ky
ZCot(T)—cot(2) cot( 3 ) 9)

Interchanging 1y, A> gives the same solution so
we choose 4 < Ay. Foreach 4] < 1, — 2 we
can find real solutions and there are

= N-1
(/12—1)=( )

(10)

of them.

Potential bound states We use a complex
ansatz k; = u + vi = kp and get u = % and from
equation (9)

cos u sinh(Nv) = sinh((N — 1)v)
+ cos(Ref) sinhv (11)

and

vi =04+ m(d; — o). 12)
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Because Re ¢ € {r, 0} we get solutions for It is possible to show that
0 _ 3/2 -3
0<cosu< 1 it = A 1By~ Byl < B2+ N7) - (17)
2 ith 0 and
O<cosu<l—=  ifd=dy—1 wite > an
N 0 2rd;
EY 1, = > |1 - cos (18)
Furthercosu =1 = u =0 = v = 0is also F N
a valid solution which corresponds to the state
S7S8"yo. Bethe Ansatz for r > 2
. 5 We make the ansatz
Other solutions For the case cosu > 1 - % a
new real solution appears in (9). a(my,...,m)
Further there exists a solution which is for- - )
_ . . . 1
mally u = /2 + ico. This means - Z exp [, Z kpjm + 5 Z gPi’Pj] (19)
mi g (13) PeS, j=1 i<j
, = (-1 .
atmy,mz) = (=1 Omy+1my This leads to the equations
Counting the solutions The condition 0 < 2 cot @ = cot ki cot ]ﬁ i#j
cosu < 1 leads to N — 2 solutions. Together we 2 2 2
get Nki - Z 0,-,]- = 271'/1,'
J#
- po,ss_lbmmd aes N with 6;; = —6;; and i = O, ...,r. The Energy is
#EV = +(N-2)+ 1 = (14)  then
/2 2
Uu=m — —_ .
et E = Z (2 cos(k,)) 20)
J
which is the desired number of states.
Rapidities and String states Defining A; =
Summary of solutions cot(k;/2) we transform the system to
Aj+i\V A - A+ 2i e
A1 = A, bound states A= = | N TR

2
cosu > 1 — — spin waves
_ N
A=A -1 < )
cosu<1- N bound states

A1 < A2 — 1 spin waves

States for small energies

For energies E ~ N~ we get

|12] < ¢ VEN +1/2 (15)

for a ¢ > 0 if we now allow 4, > to take the values
—N/2,...,N/2—1. For bound states and E ~ N2
we get the estimate

v~ N2, (16)

For two particles with ImA; > & we get in the
thermodynamic limit N — oo that the left side
diverges. To get that the right side diverges we
need |A; — Ap| — 2n. A similar statement works
for ImA; < 0. In general there exist states

AN = A" 4 i(n + 1 = 2j) + O(exp(—SN))

with j = 1,2,...,n,6 > 0. These are not com-
plete for the Heisenberg magnet but they are com-
plete for a system called the Heisenberg XXZ
chain defined by

(22)

n*~ n+1

N
Hy = SiSh. + 282, +AS3S)
=1

withA #1,A > 0.
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The Algebraic Bethe Ansatz

We generalize the Bethe Ansatz and in particular
we shall not rely on intelligent guessing for the
eigenfunctions. We define the Lax operator on
hy, ® k, with k, = h, = C2,

i
Lia()=U®1+> Za: o X o, (23)

Using the permutation operator Pa ® b = b® a
definedby P=(IQ® 1+ Y, 0% ® ) /2 we can ex-
press this by

i )
Lna(d) = (/1 - E)IM FiPra (24

We define the transport along the chain as

An() BN(/D) '

To(A) = Lya(A) -+ - Ly o(A) = (CN(/l) Dy(2)

We can prove the Fundamental Commutation Re-
lation (FCR)

Ra] ,as (/l - ,U)Tal (/I)Taz (l'l)
=1gy (/J)Tm (/I)Rm ,a (/l - /J) (25)
with R, 4,(A) = Ay, 4, + iPg, 4,- In particular this
shows that [F(1), F(u)] = 0 with

N-2
F = tr, T,() = 24N + Z o
=0

(26)

creates a family of N — 1 commuting operators. In
particular

-t mr0

N
+ .
2dAa 2

27
A=if2

So we just have to determine the eigenvalues of
F.

Commutation Relations The idea is to use B
as raising and C as lowering operator to create the
eigenstates. We get form the FCR

[B(A), B)] = 0
o .
A)B() = T’B@)Au) + ﬁBu)A(m

Ky :
DB = = BGHDW) = S BADG)

The ground state First we notice that for w, =
| 1) we get

wp\ A+ 4 * Wy
R S P [V R

and in particular

wofe- (Y Gyl e

We define the ground state as Q ® (1, 1) with Q =
®iv:1 wy, and we get C()Q = 0. We define the
state

Q({1}) = B(A1) - - - B(4,)Q. (30)

With the commutation relations for A, B we get

r

Aoy = |

/l—/lk—i(/l i
k=1

N
- A +§) ®(i1p

+ D N AADB) -+ BO) -+ BA)Q
k=1

where B means that the term is missing.

We get a similar term for the expression
D(A)D({A}). If we want the second terms to can-
cel we get precisely the Bethe Ansatz Equations
(21) with A = A/2. The eigenvalues F(1)P({1}) =
A, {1})D({A}) take the form

In particular we see that the second product van-
ishes for A = i/2. This ensures that the energies
get their additive form.
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