# An analogue of the Lieb-Thirring inequality for positive temperature in $d=1$ 

Johannes Alt


#### Abstract

In 2011, Frank, Lewin, Lieb and Seiringer gave lower bounds on the energy difference of the Fermi sea in all dimensions $d$ which is caused by adding a one-body potential. However, for $d=1$ the estimate contains an additional term which is not present in higher dimensions. For positive temperature, we provide a bound on the additional term for $d=1$ in terms of two $L^{p}$ norms of the potential.


## 1 Introduction

In this note we are interested in the change of the energy of a Fermi sea when adding a one-body potential $V$ to $-\Delta-\lambda$. At zero temperature this energy difference is described by $\operatorname{tr}_{V}(-\Delta-\lambda+V) Q_{\lambda, V}$. (We freely use the notation introduced in [1].)

For $d \geq 2$ the following analogue of the Lieb-Thirring inequality are proved in [1]

$$
\begin{equation*}
\operatorname{tr}_{V}(-\Delta-\lambda+V) Q_{\lambda, V} \geq-L(d) \int_{\mathbb{R}^{d}}(V(x)-\lambda)_{-}^{1+\frac{d}{2}}-\lambda_{+}^{1+\frac{d}{2}}+\frac{2+d}{2} \lambda_{+}^{\frac{d}{2}} V(x) \mathrm{d} x \tag{1.1}
\end{equation*}
$$

for real-valued $V \in L^{2}\left(\mathbb{R}^{d}\right) \cap L^{1+\frac{d}{2}}\left(\mathbb{R}^{d}\right)$ where $Q_{\lambda, V}:=\Pi_{V}^{-}-\Pi^{-}$with $\Pi_{V}^{-}:=\mathbb{1}(-\Delta-\lambda+V \leq 0)$ and $\Pi_{-}:=\mathbb{1}(-\Delta-\lambda \leq 0)$ the orthogonal projections onto the negative parts of the corresponding (self-adjoint) operators.

On the other hand, for $d=1$ they get the weaker estimates

$$
\begin{align*}
\operatorname{tr}_{V}(-\Delta-\lambda+V) Q_{V} \geq & -L(1) \int_{\mathbb{R}}(V(x)-\lambda)_{-}^{3 / 2}-\lambda^{3 / 2}+\frac{3}{2} \lambda^{1 / 2} V(x) \mathrm{d} x \\
& -L^{\prime}(1) \int_{\mathbb{R}} \frac{\sqrt{\lambda}+|k|}{\sqrt{\lambda}|k|} \log \left(\frac{2 \sqrt{\lambda}+|k|}{|2 \sqrt{\lambda}-|k||}\right)|\hat{V}(k)|^{2} \mathrm{~d} k \tag{1.2}
\end{align*}
$$

for $\lambda>0$ and

$$
\operatorname{tr}_{V}(-\Delta-\lambda+V) Q_{V} \geq-L(1) \int_{\mathbb{R}}(V(x)-\lambda)_{-}^{3 / 2} \mathrm{~d} x
$$

for $\lambda \leq 0$. Note that (1.2) has an additional term compared to 1.1 . We will see in section 2 that this additional term diverges logarithmically for $\lambda \downarrow 0$.

We are interested in the Fermi gas at a positive temperature $T$ and a chemical potential $\mu$. In this case we have to consider the Fermi-Dirac distribution for the free energy

$$
f_{T, \mu}(\lambda)=-T \log \left(1+\mathrm{e}^{-(\lambda-\mu) / T}\right)
$$

with the second derivative

$$
f_{T, \mu}^{\prime \prime}(\lambda)=-\frac{\mathrm{e}^{-(\lambda-\mu) / T}}{T\left(1+\mathrm{e}^{-(\lambda-\mu) / T}\right)^{2}}
$$

for $T, \mu>0$. (We set $f:=f_{T, \mu}$.) Then the difference in the free energy caused by adding a one-body potential $V$ is given by

$$
\begin{equation*}
\int_{\mathbb{R}} \operatorname{tr}_{V}(-\Delta+V-\lambda) Q_{\lambda, V} f^{\prime \prime}(\lambda) \mathrm{d} \lambda \tag{1.3}
\end{equation*}
$$

Our main goal is to study the additional term in 1.2 for positive temperature $T$ and a chemical potential $\mu$ i.e. the integral

$$
\begin{equation*}
I_{1}(f, V):=L^{\prime}(1) \int_{0}^{\infty} f_{T, \mu}^{\prime \prime}(\lambda) \int_{\mathbb{R}} \frac{\lambda^{1 / 2}+|k|}{\lambda^{1 / 2}|k|} \log \left(\frac{2 \lambda^{1 / 2}+|k|}{\left|2 \lambda^{1 / 2}-|k|\right|}\right)|\hat{V}(k)|^{2} \mathrm{~d} k \mathrm{~d} \lambda . \tag{1.4}
\end{equation*}
$$

Note that we can restrict the $k$-integration in (1.4) from $\mathbb{R}$ to $[0, \infty)$ by adding a factor 2 since $\hat{V}(-k)=\overline{\hat{V}(k)}$ for all $k \in \mathbb{R}$ as $V$ is real-valued.

## 2 Divergence of the additional term in (1.2) for $\lambda \downarrow 0$

For $V \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ and $\lambda>0$ we define

$$
I(V, \lambda):=\int_{0}^{\infty} \frac{\sqrt{\lambda}+k}{\sqrt{\lambda} k} \log \left(\frac{2 \sqrt{\lambda}+k}{|2 \sqrt{\lambda}-k|}\right)|\hat{V}(k)|^{2} \mathrm{~d} k
$$

By Fatou's lemma we get

$$
\liminf _{\lambda \downarrow 0} I(V, \lambda) \geq \int_{0}^{\infty} \frac{1+y}{y} \log \left(\frac{2+y}{|2-y|}\right) \lim _{\lambda \downarrow 0}|\hat{V}(\sqrt{\lambda} y)|^{2} \mathrm{~d} y=|\hat{V}(0)|^{2} \int_{0}^{\infty} \frac{1+y}{y} \log \left(\frac{2+y}{|2-y|}\right) \mathrm{d} y=\infty
$$

where we used the substitution $k=\sqrt{\lambda} y$ in the second step and $\hat{V} \in C(\mathbb{R})$ in the third step.
Next, we analyze the divergence rate of $I(V, \lambda)$ for $\lambda \downarrow 0$.

Lemma 2.1. We have

$$
\lim _{\lambda \downarrow 0} \frac{I(V, \lambda)}{\log (1 / \sqrt{\lambda})}=4|\hat{V}(0)|^{2}
$$

Proof. We define

$$
L(V):=\lim _{\lambda \downarrow 0} \frac{I(V, \lambda)}{\log (1 / \sqrt{\lambda})}
$$

For every $\varepsilon>0$ we get using the substitution $k=\sqrt{\lambda} y$

$$
\begin{aligned}
\frac{1}{\log (1 / \sqrt{\lambda})} \int_{\varepsilon}^{\infty} \frac{\sqrt{\lambda}+k}{\sqrt{\lambda} k} \log \left(\frac{2 \sqrt{\lambda}+k}{|2 \sqrt{\lambda}-k|}\right)|\hat{V}(k)|^{2} \mathrm{~d} k & =\frac{1}{\log (1 / \sqrt{\lambda})} \int_{\varepsilon / \sqrt{\lambda}}^{\infty} \frac{1+y}{y} \log \left(\frac{2+y}{|2-y|}\right)|\hat{V}(\sqrt{\lambda} y)|^{2} \mathrm{~d} y \\
& \leq \frac{C_{\varepsilon}}{\log (1 / \sqrt{\lambda})} \int_{\varepsilon / \sqrt{\lambda}}^{\infty}|\hat{V}(\sqrt{\lambda} y)|^{2} \frac{\mathrm{~d} y}{y} \\
& =\frac{C_{\varepsilon}}{\log (1 / \sqrt{\lambda})} \int_{\varepsilon}^{\infty}|\hat{V}(y)|^{2} \frac{\mathrm{~d} y}{y} \\
& \xrightarrow{\lambda \downarrow 0} 0 .
\end{aligned}
$$

Therefore, we can replace the upper bound of integration in the definition of $L$ by any $\varepsilon>0$ i.e. we redefine

$$
L(V):=\lim _{\lambda \downarrow 0} \frac{1}{\log (1 / \sqrt{\lambda})} \int_{0}^{\varepsilon} \frac{\sqrt{\lambda}+k}{\sqrt{\lambda} k} \log \left(\frac{2 \sqrt{\lambda}+k}{|2 \sqrt{\lambda}-k|}\right)|\hat{V}(k)|^{2} \mathrm{~d} k=\lim _{\lambda \downarrow 0} \frac{I(V, \lambda)}{\log (1 / \sqrt{\lambda})}
$$

Since $\hat{V} \in C(\mathbb{R})$ (as $\left.V \in L^{1}(\mathbb{R})\right)$ we find for every $\delta>0$ an $\varepsilon>0$ such that

$$
|\hat{V}(0)|^{2}-\delta \leq|\hat{V}(k)|^{2} \leq|\hat{V}(0)|^{2}+\delta
$$

for all $k \in[0, \varepsilon]$.
Moreover, we have

$$
\begin{equation*}
x-R(x) \leq \log (1+x) \leq x+R(x) \tag{2.1}
\end{equation*}
$$

with $R(x)=|x|^{2} /(2(1-|x|))$ for $|x|<1$. This implies

$$
\int_{0}^{\varepsilon} \frac{k+\sqrt{\lambda}}{k \sqrt{\lambda}} \log \left(\frac{2 \sqrt{\lambda}+k}{|2 \sqrt{\lambda}-k|}\right) \mathrm{d} k \geq \int_{10}^{\varepsilon / \sqrt{\lambda}} \log \left(1+\frac{4}{y-2}\right) \mathrm{d} y \geq 4 \log \left(\frac{\varepsilon}{\sqrt{\lambda}}-2\right)-C
$$

Therefore, we get

$$
4\left(|\hat{V}(0)|^{2}-\delta\right) \leq \lim _{\lambda \downarrow 0} \frac{1}{\log (1 / \sqrt{\lambda})} \int_{0}^{\varepsilon} \frac{\sqrt{\lambda}+k}{\sqrt{\lambda} k} \log \left(\frac{2 \sqrt{\lambda}+k}{|2 \sqrt{\lambda}-k|}\right)|\hat{V}(k)|^{2} \mathrm{~d} k
$$

As $\delta>0$ was arbitrary we get $L(V) \geq 4|\hat{V}(0)|^{2}$. Using 2.1 we get for every sufficiently large $L$

$$
\begin{aligned}
\int_{0}^{\varepsilon} \frac{k+\sqrt{\lambda}}{k \sqrt{\lambda}} \log \left(\frac{2 \sqrt{\lambda}+k}{|2 \sqrt{\lambda}-k|}\right) \mathrm{d} k & =\int_{0}^{L} \frac{1+y}{y} \log \left(\frac{2+y}{|y-2|}\right) \mathrm{d} y+\int_{L}^{\varepsilon / \sqrt{\lambda}} \frac{1+y}{y} \log \left(1+\frac{4}{y-2}\right) \mathrm{d} y \\
& \leq C_{L}+4 \frac{L+1}{L} \log \left(\frac{\varepsilon}{\sqrt{\lambda}}-2\right)
\end{aligned}
$$

Thus, we have $L(V) \leq \frac{4(L+1)}{L}\left(|\hat{V}(0)|^{2}+\delta\right)$ and therefore, as $\delta$ and $L$ were arbitrary we get $L(V) \leq 4|\hat{V}(0)|^{2}$.

## 3 Estimate on the additional term in (1.2)

Next, we want to analyze the function $G(k):=\int_{0}^{\infty} g(k, \lambda) \mathrm{d} \lambda$ where

$$
g(k, \lambda):=-\frac{\mathrm{e}^{-(\lambda-\mu) / T}}{T\left(1+\mathrm{e}^{-(\lambda-\mu) / T}\right)^{2}} \frac{\sqrt{\lambda}+k}{k \sqrt{\lambda}} \log \left(\frac{2 \sqrt{\lambda}+k}{|2 \sqrt{\lambda}-k|}\right) .
$$

In particular, we want to analyze which $L^{p}$ spaces contain $G$. Our interest is caused by the fact that Fubini's Theorem allows us to rewrite

$$
\begin{equation*}
I_{1}(f, V)=2 L^{\prime}(1) \int_{0}^{\infty} G(k)|\hat{V}(k)|^{2} \mathrm{~d} k \tag{3.1}
\end{equation*}
$$

Using Fatou's lemma and the limits

$$
\begin{aligned}
\lim _{k \downarrow 0} g(k, \lambda) & =-\frac{1}{T \sqrt{\lambda}} \frac{\mathrm{e}^{-(\lambda-\mu) / T}}{\left(1+\mathrm{e}^{-(\lambda-\mu) / T}\right)^{2}} \\
\lim _{k \rightarrow \infty} \frac{g(k, \lambda)}{k^{-1}} & =-\frac{4}{T} \frac{\mathrm{e}^{-(\lambda-\mu) / T}}{\left(1+\mathrm{e}^{-(\lambda-\mu) / T}\right)^{2}}
\end{aligned}
$$

which follow from applying l'Hôpital's rule we get the following (finite) lower bounds for the behaviour of $G$ for $k \rightarrow 0$ and $k \rightarrow \infty$

$$
\begin{aligned}
\liminf _{k \downarrow 0}|G(k)| & \geq \int_{0}^{\infty} \frac{1}{T \sqrt{\lambda}} \frac{\mathrm{e}^{-(\lambda-\mu) / T}}{\left(1+\mathrm{e}^{-(\lambda-\mu) / T}\right)^{2}} \mathrm{~d} \lambda \\
\liminf _{k \rightarrow \infty} k|G(k)| & \geq \int_{0}^{\infty} \frac{4}{T} \frac{\mathrm{e}^{-(\lambda-\mu) / T}}{\left(1+\mathrm{e}^{-(\lambda-\mu) / T}\right)^{2}} \mathrm{~d} \lambda=\frac{4}{1+\mathrm{e}^{\mu / T}} .
\end{aligned}
$$

Using the estimate $f^{\prime \prime}(\lambda) \leq \exp (-|\lambda-\mu| / T)$ and the substitution $\lambda=k^{2} \lambda^{\prime}$ we get

$$
\begin{aligned}
\int_{0}^{\infty} \frac{\mathrm{e}^{-(\lambda-\mu) / T}}{T\left(1+\mathrm{e}^{-(\lambda-\mu) / T}\right)^{2}} \frac{k+\sqrt{\lambda}}{k \sqrt{\lambda}} \log \left(\frac{2 \sqrt{\lambda}+k}{|2 \sqrt{\lambda}-k|}\right) \mathrm{d} \lambda & \leq \int_{0}^{\infty} \frac{\mathrm{e}^{-|\lambda-\mu| / T}}{T} \frac{k+\sqrt{\lambda}}{k \sqrt{\lambda}} \log \left(\frac{2 \sqrt{\lambda}+k}{|2 \sqrt{\lambda}-k|}\right) \mathrm{d} \lambda \\
& =\int_{0}^{\infty} \frac{k}{T} \mathrm{e}^{-k^{2}\left|\lambda-\mu / k^{2}\right| / T} \frac{1+\sqrt{\lambda}}{\sqrt{\lambda}} \log \left(\frac{2 \sqrt{\lambda}+1}{|2 \sqrt{\lambda}-1|}\right) \mathrm{d} \lambda
\end{aligned}
$$

Our goal is to prove that $G$ is contained in $L^{3 / 2}$. Therefore, we distinguish between small $k$ and large $k$ and
define first the following auxiliary functions

$$
\begin{aligned}
h_{1}(k, \lambda) & :=\frac{k}{T} \mathrm{e}^{-k^{2}\left|\lambda-\mu / k^{2}\right| / T}, \\
h_{2}(\lambda) & :=\frac{1+\sqrt{\lambda}}{\sqrt{\lambda}} \log \left(\frac{2 \sqrt{\lambda}+1}{|2 \sqrt{\lambda}-1|}\right) .
\end{aligned}
$$

Thus,

$$
|G(k)| \leq \int_{0}^{\infty} h_{1}(k, \lambda) h_{2}(\lambda) \mathrm{d} \lambda
$$

and we can use Hölder's inequality to estimate the integral on the right hand side.

Note that $h_{2}$ has for $\lambda=0$ the following behaviour

$$
\lim _{\lambda \downarrow 0}\left(1+\frac{1}{\sqrt{\lambda}}\right) \log \left(\frac{2 \sqrt{\lambda}+1}{|2 \sqrt{\lambda}-1|}\right)=\lim _{\lambda \downarrow 0} \frac{4}{(1+2 \sqrt{\lambda})(1-2 \sqrt{\lambda})}=4
$$

where we used l'Hôpital's rule in the first step. The logarithmic singularity at $\lambda=1 / 4$ lies in $L^{p}$ for all $p \geq 1$ since

$$
\lim _{x \downarrow 0} x^{\alpha} \log (x)^{\beta}=0
$$

for all $\alpha, \beta>0$. For large $\lambda$ the function $h_{2}$ behaves like $\lambda^{-1 / 2}$. Thus, $h_{2} \in L^{p}[0, \infty)$ for all $p>2$.

On the other hand, we have

$$
\begin{aligned}
\left\|h_{1}(k, \cdot)\right\|_{p}^{p} & =\frac{k^{p}}{T^{p}} \int_{0}^{\infty} \mathrm{e}^{-p k^{2}\left|\lambda-\mu / k^{2}\right| / T} \mathrm{~d} \lambda \\
& =\frac{k^{p}}{T^{p}}\left(\left[\frac{T}{p k^{2}} \mathrm{e}^{p k^{2} \lambda / T}\right]_{-\mu / k^{2}}^{0}+\left[-\frac{T}{p k^{2}} \mathrm{e}^{-p k^{2} \lambda / T}\right]_{0}^{\infty}\right) \\
& =\frac{k^{p-2}}{p T^{p-1}}\left(2-e^{-p \mu / T}\right) \leq 2 \frac{k^{p-2}}{p T^{p-1}}
\end{aligned}
$$

which implies

$$
\begin{equation*}
|G(k)| \leq\left(\frac{2}{p}\right)^{1 / p} \frac{k^{1-2 / p}}{T^{1-1 / p}} \tag{3.2}
\end{equation*}
$$

for $p \in(1,2)$ by Hölder's inequality. Note that this constant diverges for $T \rightarrow 0$ and that the (possible) divergence of $G$ at zero lies in every $L^{p}$ space.

For $k^{2}>T+1$ we define the auxiliary functions

$$
\begin{aligned}
h_{3}(k, \lambda) & :=\frac{k}{T} \mathrm{e}^{-k^{2}\left|\lambda-\mu / k^{2}\right| / T} \mathrm{e}^{\lambda} \\
h_{4}(\lambda) & :=\mathrm{e}^{-\lambda} \frac{1+\sqrt{\lambda}}{\sqrt{\lambda}} \log \left(\frac{2 \sqrt{\lambda}+1}{|2 \sqrt{\lambda}-1|}\right) .
\end{aligned}
$$

As before,

$$
|G(k)| \leq \int_{0}^{\infty} h_{3}(k, \lambda) h_{4}(\lambda) \mathrm{d} \lambda
$$

which can be estimated by Hölder's inequality. Using the previous considerations and fact that $h_{4}$ decays
exponentially for $\lambda \rightarrow \infty$ we get $h_{4} \in L^{q}[0, \infty)$ for $1<q<\infty$. For $p>1$ and $k^{2}>T+1$ we have

$$
\begin{aligned}
\left\|h_{3}(k, \cdot)\right\|_{p}^{p} & =\frac{k^{p}}{T^{p}}\left(\int_{0}^{\mu / k^{2}} \mathrm{e}^{-p \mu / T+p\left(k^{2} / T+1\right) \lambda} \mathrm{d} \lambda+\int_{\mu / k^{2}}^{\infty} \mathrm{e}^{p \mu / T-p\left(k^{2} / T-1\right) \lambda} \mathrm{d} \lambda\right) \\
& =\frac{k^{p}}{T^{p}}\left(\mathrm{e}^{-p \mu / T}\left[\frac{T}{p\left(k^{2}+T\right)} \mathrm{e}^{p\left(k^{2} / T+1\right) \lambda}\right]_{0}^{\mu / k^{2}}+\mathrm{e}^{p \mu / T}\left[-\frac{T}{p\left(k^{2}-T\right)} \mathrm{e}^{-p\left(k^{2} / T-1\right) \lambda}\right]_{\mu / k^{2}}^{\infty}\right) \\
& =\frac{k^{p}}{p T^{p-1}}\left(\frac{\mathrm{e}^{\mu p / k^{2}}-\mathrm{e}^{-p \mu / T}}{k^{2}+T}+\frac{\mathrm{e}^{\mu p / k^{2}}}{k^{2}-T}\right)
\end{aligned}
$$

Thus, we have for $k^{2}>T+1$ the estimate

$$
\begin{equation*}
|G(k)| \leq C k^{1-2 / p} \tag{3.3}
\end{equation*}
$$

for $p>1$ by Hölder's inequality.
Combining the estimates in (3.2) and (3.3) we get $G \in L^{p}[0, \infty)$ for $1<p<\infty$. Thus, in particular $G \in L^{3 / 2}[0, \infty)$ and we have by Hölder's inequality

$$
\int_{0}^{\infty} G(k)|\hat{V}(k)|^{2} \mathrm{~d} k \geq\|\hat{V}\|_{\infty} \int_{0}^{\infty} G(k)|\hat{V}(k)| \mathrm{d} k \geq-\|V\|_{1}\|G\|_{3 / 2}\|\hat{V}\|_{3} \geq-C\|G\|_{3 / 2}\|V\|_{1}\|V\|_{3 / 2}
$$

where $C$ is the operator norm of the Fourier transform $L^{3 / 2} \rightarrow L^{3}$. (Note $G(k) \leq 0$ for all $k$.) This implies that (3.1) is finite for all $V \in L^{1}(\mathbb{R}) \cap L^{3 / 2}(\mathbb{R})$.

Similarly, Hölder's inequality for $p \in(1,2)$ yields

$$
\int_{0}^{\infty} G(k)|\hat{V}(k)|^{2} \mathrm{~d} k \geq\|G\|_{\frac{p}{2-p}}\|\hat{V}\|_{\frac{p-1}{p}}^{2} \geq C\|G\|_{\frac{p}{2-p}}\|V\|_{p}^{2}
$$

where $C$ equals the squared operator norm of the Fourier transform $L^{p} \rightarrow L^{(p-1) / p}$.

## References

[1] R. L. Frank, M. Lewin, E. H. Lieb, R. Seiringer: A positive density analogue of the Lieb-Thirring inequality. Duke Math. J., 162(2013), no. 3, 435-495. URL http://arxiv.org/abs/1108.4246

