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In 2011, Frank, Lewin, Lieb and Seiringer gave lower bounds on the energy difference of the
Fermi sea in all dimensions d which is caused by adding a one-body potential. However, for d = 1
the estimate contains an additional term which is not present in higher dimensions. For positive
temperature, we provide a bound on the additional term for d = 1 in terms of two Lp norms of the
potential.

1 Introduction
In this note we are interested in the change of the energy of a Fermi sea when adding a one-body potential V
to −∆ − λ. At zero temperature this energy difference is described by trV (−∆ − λ + V )Qλ,V . (We freely use
the notation introduced in [1].)
For d ≥ 2 the following analogue of the Lieb-Thirring inequality are proved in [1]

trV (−∆− λ+ V )Qλ,V ≥ −L(d)
∫
Rd

(V (x)− λ)1+ d
2

− − λ1+ d
2

+ + 2 + d

2 λ
d
2
+V (x)dx (1.1)

for real-valued V ∈ L2(Rd) ∩ L1+ d
2 (Rd) where Qλ,V ..= Π−V − Π− with Π−V ..= 1(−∆ − λ + V ≤ 0) and

Π− ..= 1(−∆ − λ ≤ 0) the orthogonal projections onto the negative parts of the corresponding (self-adjoint)
operators.
On the other hand, for d = 1 they get the weaker estimates

trV (−∆− λ+ V )QV ≥ −L(1)
∫
R

(V (x)− λ)3/2
− − λ3/2 + 3

2λ
1/2V (x)dx

−L′(1)
∫
R

√
λ+ |k|√
λ|k|

log
(

2
√
λ+ |k|

|2
√
λ− |k||

)
|V̂ (k)|2dk (1.2)

for λ > 0 and
trV (−∆− λ+ V )QV ≥ −L(1)

∫
R

(V (x)− λ)3/2
− dx

for λ ≤ 0. Note that (1.2) has an additional term compared to (1.1). We will see in section 2 that this additional
term diverges logarithmically for λ ↓ 0.
We are interested in the Fermi gas at a positive temperature T and a chemical potential µ. In this case we

have to consider the Fermi-Dirac distribution for the free energy

fT,µ(λ) = −T log
(

1 + e−(λ−µ)/T
)

with the second derivative
f ′′T,µ(λ) = − e−(λ−µ)/T

T
(
1 + e−(λ−µ)/T

)2

for T, µ > 0. (We set f ..= fT,µ.) Then the difference in the free energy caused by adding a one-body potential
V is given by ∫

R
trV (−∆ + V − λ)Qλ,V f ′′(λ)dλ. (1.3)
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Our main goal is to study the additional term in (1.2) for positive temperature T and a chemical potential µ
i.e. the integral

I1(f, V ) ..= L′(1)
∫ ∞

0
f ′′T,µ(λ)

∫
R

λ1/2 + |k|
λ1/2|k|

log
(

2λ1/2 + |k|
|2λ1/2 − |k||

)
|V̂ (k)|2dkdλ. (1.4)

Note that we can restrict the k-integration in (1.4) from R to [0,∞) by adding a factor 2 since V̂ (−k) = V̂ (k)
for all k ∈ R as V is real-valued.

2 Divergence of the additional term in (1.2) for λ ↓ 0

For V ∈ L1(R) ∩ L2(R) and λ > 0 we define

I(V, λ) ..=
∫ ∞

0

√
λ+ k√
λk

log
(

2
√
λ+ k

|2
√
λ− k|

)
|V̂ (k)|2dk.

By Fatou’s lemma we get

lim inf
λ↓0

I(V, λ) ≥
∫ ∞

0

1 + y

y
log
(

2 + y

|2− y|

)
lim
λ↓0
|V̂ (
√
λy)|2dy = |V̂ (0)|2

∫ ∞
0

1 + y

y
log
(

2 + y

|2− y|

)
dy =∞

where we used the substitution k =
√
λy in the second step and V̂ ∈ C(R) in the third step.

Next, we analyze the divergence rate of I(V, λ) for λ ↓ 0.

Lemma 2.1. We have
lim
λ↓0

I(V, λ)
log(1/

√
λ)

= 4|V̂ (0)|2.

Proof. We define
L(V ) ..= lim

λ↓0

I(V, λ)
log(1/

√
λ)
.

For every ε > 0 we get using the substitution k =
√
λy

1
log(1/

√
λ)

∫ ∞
ε

√
λ+ k√
λk

log
(

2
√
λ+ k

|2
√
λ− k|

)
|V̂ (k)|2dk = 1

log(1/
√
λ)

∫ ∞
ε/
√
λ

1 + y

y
log
(

2 + y

|2− y|

)
|V̂ (
√
λy)|2dy

≤ Cε

log(1/
√
λ)

∫ ∞
ε/
√
λ

|V̂ (
√
λy)|2 dy

y

= Cε

log(1/
√
λ)

∫ ∞
ε

|V̂ (y)|2 dy
y

λ↓0−→ 0.

Therefore, we can replace the upper bound of integration in the definition of L by any ε > 0 i.e. we redefine

L(V ) ..= lim
λ↓0

1
log(1/

√
λ)

∫ ε

0

√
λ+ k√
λk

log
(

2
√
λ+ k

|2
√
λ− k|

)
|V̂ (k)|2dk = lim

λ↓0

I(V, λ)
log(1/

√
λ)
.

Since V̂ ∈ C(R) (as V ∈ L1(R)) we find for every δ > 0 an ε > 0 such that

|V̂ (0)|2 − δ ≤ |V̂ (k)|2 ≤ |V̂ (0)|2 + δ

for all k ∈ [0, ε].
Moreover, we have

x−R(x) ≤ log(1 + x) ≤ x+R(x) (2.1)
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with R(x) = |x|2/(2(1− |x|)) for |x| < 1. This implies∫ ε

0

k +
√
λ

k
√
λ

log
(

2
√
λ+ k

|2
√
λ− k|

)
dk ≥

∫ ε/
√
λ

10
log
(

1 + 4
y − 2

)
dy ≥ 4 log

(
ε√
λ
− 2
)
− C.

Therefore, we get

4(|V̂ (0)|2 − δ) ≤ lim
λ↓0

1
log(1/

√
λ)

∫ ε

0

√
λ+ k√
λk

log
(

2
√
λ+ k

|2
√
λ− k|

)
|V̂ (k)|2dk.

As δ > 0 was arbitrary we get L(V ) ≥ 4|V̂ (0)|2. Using (2.1) we get for every sufficiently large L∫ ε

0

k +
√
λ

k
√
λ

log
(

2
√
λ+ k

|2
√
λ− k|

)
dk =

∫ L

0

1 + y

y
log
(

2 + y

|y − 2|

)
dy +

∫ ε/
√
λ

L

1 + y

y
log
(

1 + 4
y − 2

)
dy

≤ CL + 4L+ 1
L

log
(

ε√
λ
− 2
)
.

Thus, we have L(V ) ≤ 4(L+1)
L (|V̂ (0)|2 + δ) and therefore, as δ and L were arbitrary we get L(V ) ≤ 4|V̂ (0)|2.

3 Estimate on the additional term in (1.2)
Next, we want to analyze the function G(k) ..=

∫∞
0 g(k, λ)dλ where

g(k, λ) ..= − e−(λ−µ)/T

T (1 + e−(λ−µ)/T )2

√
λ+ k

k
√
λ

log
(

2
√
λ+ k

|2
√
λ− k|

)
.

In particular, we want to analyze which Lp spaces contain G. Our interest is caused by the fact that Fubini’s
Theorem allows us to rewrite

I1(f, V ) = 2L′(1)
∫ ∞

0
G(k)|V̂ (k)|2dk. (3.1)

Using Fatou’s lemma and the limits

lim
k↓0

g(k, λ) = − 1
T
√
λ

e−(λ−µ)/T

(1 + e−(λ−µ)/T )2 ,

lim
k→∞

g(k, λ)
k−1 = − 4

T

e−(λ−µ)/T

(1 + e−(λ−µ)/T )2

which follow from applying l’Hôpital’s rule we get the following (finite) lower bounds for the behaviour of G for
k → 0 and k →∞

lim inf
k↓0

|G(k)| ≥
∫ ∞

0

1
T
√
λ

e−(λ−µ)/T

(1 + e−(λ−µ)/T )2 dλ,

lim inf
k→∞

k|G(k)| ≥
∫ ∞

0

4
T

e−(λ−µ)/T

(1 + e−(λ−µ)/T )2 dλ = 4
1 + eµ/T

.

Using the estimate f ′′(λ) ≤ exp(−|λ− µ|/T ) and the substitution λ = k2λ′ we get∫ ∞
0

e−(λ−µ)/T

T (1 + e−(λ−µ)/T )2
k +
√
λ

k
√
λ

log
(

2
√
λ+ k

|2
√
λ− k|

)
dλ ≤

∫ ∞
0

e−|λ−µ|/T

T

k +
√
λ

k
√
λ

log
(

2
√
λ+ k

|2
√
λ− k|

)
dλ

=
∫ ∞

0

k

T
e−k

2|λ−µ/k2|/T 1 +
√
λ√

λ
log
(

2
√
λ+ 1

|2
√
λ− 1|

)
dλ.

Our goal is to prove that G is contained in L3/2. Therefore, we distinguish between small k and large k and
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define first the following auxiliary functions

h1(k, λ) ..= k

T
e−k

2|λ−µ/k2|/T ,

h2(λ) ..= 1 +
√
λ√

λ
log
(

2
√
λ+ 1

|2
√
λ− 1|

)
.

Thus,
|G(k)| ≤

∫ ∞
0

h1(k, λ)h2(λ)dλ

and we can use Hölder’s inequality to estimate the integral on the right hand side.

Note that h2 has for λ = 0 the following behaviour

lim
λ↓0

(
1 + 1√

λ

)
log
(

2
√
λ+ 1

|2
√
λ− 1|

)
= lim

λ↓0

4
(1 + 2

√
λ)(1− 2

√
λ)

= 4

where we used l’Hôpital’s rule in the first step. The logarithmic singularity at λ = 1/4 lies in Lp for all p ≥ 1
since

lim
x↓0

xα log(x)β = 0

for all α, β > 0. For large λ the function h2 behaves like λ−1/2. Thus, h2 ∈ Lp[0,∞) for all p > 2.

On the other hand, we have

‖h1(k, ·)‖pp = kp

T p

∫ ∞
0

e−pk
2|λ−µ/k2|/Tdλ

= kp

T p

([
T

pk2 epk
2λ/T

]0

−µ/k2
+
[
− T

pk2 e−pk
2λ/T

]∞
0

)

= kp−2

pT p−1

(
2− e−pµ/T

)
≤ 2 kp−2

pT p−1 ,

which implies

|G(k)| ≤
(

2
p

)1/p
k1−2/p

T 1−1/p (3.2)

for p ∈ (1, 2) by Hölder’s inequality. Note that this constant diverges for T → 0 and that the (possible)
divergence of G at zero lies in every Lp space.

For k2 > T + 1 we define the auxiliary functions

h3(k, λ) ..= k

T
e−k

2|λ−µ/k2|/T eλ,

h4(λ) ..= e−λ 1 +
√
λ√

λ
log
(

2
√
λ+ 1

|2
√
λ− 1|

)
.

As before,
|G(k)| ≤

∫ ∞
0

h3(k, λ)h4(λ)dλ

which can be estimated by Hölder’s inequality. Using the previous considerations and fact that h4 decays
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exponentially for λ→∞ we get h4 ∈ Lq[0,∞) for 1 < q <∞. For p > 1 and k2 > T + 1 we have

‖h3(k, ·)‖pp = kp

T p

(∫ µ/k2

0
e−pµ/T+p(k2/T+1)λdλ+

∫ ∞
µ/k2

epµ/T−p(k2/T−1)λdλ
)

= kp

T p

(
e−pµ/T

[
T

p(k2 + T )ep(k2/T+1)λ
]µ/k2

0
+ epµ/T

[
− T

p(k2 − T )e−p(k2/T−1)λ
]∞
µ/k2

)

= kp

pT p−1

(
eµp/k2 − e−pµ/T

k2 + T
+ eµp/k2

k2 − T

)
.

Thus, we have for k2 > T + 1 the estimate

|G(k)| ≤ Ck1−2/p (3.3)

for p > 1 by Hölder’s inequality.
Combining the estimates in (3.2) and (3.3) we get G ∈ Lp[0,∞) for 1 < p < ∞. Thus, in particular

G ∈ L3/2[0,∞) and we have by Hölder’s inequality∫ ∞
0

G(k)|V̂ (k)|2dk ≥ ‖V̂ ‖∞
∫ ∞

0
G(k)|V̂ (k)|dk ≥ −‖V ‖1‖G‖3/2‖V̂ ‖3 ≥ −C‖G‖3/2‖V ‖1‖V ‖3/2

where C is the operator norm of the Fourier transform L3/2 → L3. (Note G(k) ≤ 0 for all k.) This implies that
(3.1) is finite for all V ∈ L1(R) ∩ L3/2(R).
Similarly, Hölder’s inequality for p ∈ (1, 2) yields∫ ∞

0
G(k)|V̂ (k)|2dk ≥ ‖G‖ p

2−p
‖V̂ ‖2

p−1
p

≥ C‖G‖ p
2−p
‖V ‖2

p

where C equals the squared operator norm of the Fourier transform Lp → L(p−1)/p.
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