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Abstract. In this text I give a brief summary of my doings during the stay at IST
Austria and and some notes about the research task I was given and answered partially.

1 My work in general

After the introductory talk my professor gave me about the theory of random matrices
(RMT) and their applications and motivations in physics I started to learn the proof
of the Wigner’s theorem (WT), which can be considered as the starting point of the
RMT and the moment method in particular. For that purpose I used the book [1]. It
took me quite a lot of time because RMT and the WT itself connects many branches
of mathematics (probability theory, analysis, linear algebra, combinatorics). Then I was
faced with the related task 1. When I got stuck with answering it, Zhigang, one of the
postdocs in my group, found quite a recent paper [2] solving almost the same problem.
Their approach looked ingenious and very insightful to me 1 but for the main part didn’t
request any additional knowledge. Thus I went through it and my task was modified to
get a similar result for slightly more general assumptions. Unfortunately it turned out
that I am unable to give the result in such explicit form as in [2] since one particular
PDE doesn’t have explicit solution.

2 Wigner’s theorem and the asymptotic expansion of ex-
pected empirical (spectral) measure

2.1 Introduction

Let us consider independent complex random variables Wij for i, j ∈ N with zero mean

and finite moments of all order. Then we define Wigner matrix as X
(n)
ij := 1√

n
Wij

and X
(n)
ji := X

(n)
ij for 1 ≤ i ≤ j ≤ n. Every such matrix has real eigenvalues since it is

hermitian. On certain assumptions for the Wigner matrices the WT states that the empi-
rical (random) measures µn = 1

n

∑n
i=1 δλi converge weakly in probability to the measure

given by the density σ(x) = 1
2π

√
4− x2χ[−2,2], i.e. for any bounded continuous f one has

1

n

n∑
i=1

f(λi) =

∫
R
f(x) dµn(x)

n→∞−−−→
prob.

∫
R
f(x)σ(x) dx.

Using suitable continuous estimates of χ(a,b) one can then for example check that
1
n |{i |λi ∈ (a, b)}| −−−→

prob.

∫ b
a σ(x) dx.

1See next section
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There are two common ways to get this result – themoment method and the resolvent
method. The moment method uses the moments

mk = E
∫
R
xk dµn(x) = E

1

n

∑
i

λki = E
1

n
TrXk 2

and their counting involve the combinatorial stuff. The resolvent method computes the
Stieltjes transform (2.4 in [1]) of the limit of the empirical measures µn.

2.2 Asymptotic expansion, paper [2] and the new assumption

Let us now concentrate on the moment method. The substantial part of WT proof
via moment method is dealing with the sequence mk(n), in particular showing that
limn→∞m2k+1 = 0 and limn→∞m2k = Cat(k), where Cat(n) = 1

n+1

(
2n
n

)
is the n-th Ca-

talan number. Actually this can be considered as a weaker version of WT (instead of the
convergence in probability). When one wants to know more about mk(n) the asymptotic
expansion in 1

n can be done. First related question arose is about the magnitude of the
subleading term of the expansion. In greater detail we ask about

lim
n→∞

n

(
E
∫
R
xk dµn(x)−

∫
R
xkσ(x) dx

)
.

The paper [2] accomplished this task and even managed to obtain explicit formula for
„correction measureÿ to the semicircle distribution3.

The moment method proof of WT requires only the first two moments of the entries of
X and the boundedness of all the moments (see 2.1 in [1]). For computing the subleading
term the paper [2] uses EW 2

ij = 0 for i 6= j (for i = j we have EW 2
ii = E|Wii|2 = σ2 =

E|Wmn|2 as for any „non–diagonalÿ variable Wmn) and moreover E|Wij |4 = α also
for i 6= j. Then one may ask what happens in the complex case if we don’t make EW 2

ij

disappear but set for all i < j EW 2
ij = θ and EW 2

ji = θ for some θ ∈ C.

2.3 Contribution of the new case

We will follow the approach of [2]. They showed that the expectation of odd moments
is zero, so let k = 2l. We want to compute

lim
n→∞

n

(
E
1

n

(
TrX2l

)
− Cat(l)

)
,

more specifically just the terms of

lim
n→∞

1

nl

n∑
i1,...,in=1

E (Xi1i2 . . . Xi2li1)

corresponding to the closed paths on the graphs on {1, . . . , n} having l vertices, l edges
and exactly one cycle and the path visits each edge twice. Furthermore it visits exactly
the edges of the cycle both times in the same direction. Unlike the first case discussed on
page 6 of [2] the contribution of such a term depends on the number of edges of the cycle

2We will write just X instead of X(n).
3Reading first the mentioned paper is highly recommended.
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visited from the lower index to the higher one and those visited in the other direction.
In the spirit of [2] we obtain the expression of desired contribution

D2l(θ) := lim
n→∞

1

nl

l∑
p=3

1

σ2p
n(n− 1) . . . (n− l + p+ 1)

(
n− l + p+ 1

p

)
·

·
∑

l1+···+lp
+r1+···+rp=l−p

(2l1 + 1)

p∏
i=1

Cat(li) Cat(ri)

p∑
a=0

θa
(
θ
)p−a

p · C(p, a).

where C(p, a) denotes the number of permutations π of {1, . . . , p} such that
|{i ∈ {1, . . . , p} |π(i) < π(i+ 1)}| = a where we set π(p + 1) = π(1) = 1. Now we put
θ = |θ|eiϕ and evaluate the limit:

D2l(θ) =
l∑

p=3

∑
l1+···+lp

+r1+···+rp=l−p

(2l1 + 1)

p∏
i=1

Cat(li) Cat(ri)

(
|θ|
σ2

)p
e−piϕ

p∑
a=0

e2aiϕ
C(p, a)
(p− 1)!

.

The number C(p, a) is determined by C(p, 0) = 0, C(3, 1) = C(3, 2) = 1 and the recurrence

C(p, a) = aC(p− 1, a) + (p− a)C(p− 1, a− 1).

One can check the recurrence by erasing the number p from any such permutation
and reconstructing it back by placing p either in one of a „increasingÿ gaps in any of
C(p−1, a) permutations or in one of (p−1)−(a−1) = p−a gaps in any of C(p−1, a−1)
permutations.

2.4 Generating functions

Our current purpose is to find the generating function of Dk(θ). In order to get this we
need to get rid of the factorial so let us define F(p, a) := C(p,a)

(p−1)! . It satisfies the recurrence

(p− 1)F (p, a) = aF(p− 1, a) + (p− a)F(p− 1, a− 1)

and the initial conditions F(p, 0) = 0, F(3, 1) = F(3, 2) = 1
2 .

Let us denote the generating function of F(p, a) by f(x, y) =
∑∞

p=3

∑p
a=0F(p, a)xpya

and the generating function of Catalan numbers by T (x) =
∑∞

k=0Cat(k)x
k. Now we can

write the generating function of Dk(θ) as

∞∑
l=3

D2l(θ)x
l =

∞∑
l=3

l∑
p=3

∑
l1+···+lp

+r1+···+rp=l−p

(2l1+1)

p∏
i=1

Cat(li) Cat(ri)x
l

(
|θ|
σ2

)p
e−piϕ

p∑
a=0

e2aiϕF(p, a) =

=
1

T (x)

∞∑
p=3

p∑
a=0

(
|θ|
σ2
e−ϕixT (x)2

)p (
2xT ′(x) + T (x)

) (
e2ϕi

)aF(p, a) =
=

(
1 + 2x

T ′(x)

T (x)

)
f

(
θ

σ2
xT (x)2, e2ϕi

)
=: G(x).

We need f to be defined for the inputs above. But since |e2ϕi| = 1,
∑p

a=0F(p, a) = 1 for
all p ≥ 3 and limx→0 T (x) = 1, for any θ ∈ C we can find sufficiently small neighbourhood
of 0 ∈ C where G(x) converges absolutely.
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It is well known that T (x) = 1−
√
1−4x
2x so it remains to find a formula for f . Then

G(x) would be a new term in the last section of [2] representing our slight generalization
of assumptions. By plugging the reccurence for F(p, a) in the definition of f(x, y) we get
the equation

f(x, y) + x3y + x3y2 +
∂f

∂x
(x, y)

(
x2y − x

)
+
∂f

∂y
(x, y)

(
xy − xy2

)
= 0.

Then we know f(0, y) = f(x, 0) = 0. It is a first order PDE for which the characteristic
method is used. Projections on the xy plane of the characteristic are solutions of this
system of ODEs:

x′ = x2y − x
y′ = xy − xy2

and are given by yr(x) =
log(x)+r
x−1 for any r ∈ R. They do not cross each other and cover

some small neighbourhood of 0 ∈ R2. Hence there is a unique solution of our PDE in
some small neighbourhood of zero – our f(x, y). But if this solution could be written
explicitly then the inverse function to the yr would also have to be explicit which is not.
This is thus the best result we can obtain via our approach.
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