
The Polaron model with cut-off in the
strong coupling regime

Introduction

In the following, we study the polaron Hamilton operator and its ground state energy
in the strong coupling limit, which is a model to describe the interaction of a charged
particle moving trough a polarized medium. The investigation is based on the Feynman-
Kac formula, which allows one to express the kernel of the imaginary time Schrödinger
semi-group 〈x|e−β(−∆+V )|y〉 as an expectation value. This has the advantage, that one
can now apply tools from probability theory to the original problem. In the case of the
polaron, Donsker and Varadhan [3] used the theory of large deviations to verify that the
asymptotic behaviour of the ground state energy E0(α) is given by

E0(α) ≈ −α2γp,

with a suitable constant γp. Their proof is based on the zero temperature limit β →∞.
In this work we rather follow the work of [1], by performing the infinite temperature
limit β → 0. Note that in both cases, the result is not quantitative, in the sense that
one obtains the limit α−2E0(α) but not the one of E0(α) + α2γp.
The goal of this write-up is, to improve the asymptotic result in the case of the polaron
model with cut-off modes. We will be able to verify that α−q

(
E0(α) + α2γp

)
−→
α→0

0 for

all q > 2
3 . It is crucial, that we discretize the original model, written in strong coupling

units. Otherwise we cannot expect the finite model to feature an α2 asymptotic. It is
worth mentioning, that the strong coupling units correspond to a semi-classical treatment
of the polarized medium.

The Model

We want to investigate the asymptotic behaviour of the ground state energy E0(α) in
the limit α→∞ of the Hamilton operator Hα := α2hα, where

hα := −1

2
∆ +

εα|x|2

2α4
+
∑
k∈Λ

b†kbk + n−
3
2

∑
k∈Λ

|k|−1
(
eikxb†k + e−ikxbk

)
,
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and Λ := {k ∈
(
n−1Z

)3
: 0 < |k| ≤ m} ⊂ R3. Note that bk should satisfies the α

dependent CCR [bk, b
†
l ] = α−2δk,lI. Let us define ak := α bk, which then satisfy the α

independent CCR [ak, a
†
l ] = δk,lI. As a motivation, this Hamilton operator emerges, if

one discretizes the Polaron Hamilton operator

−1

2
∆ +

εα|x|2

2
+

∫
a†kak dk +

√
α

∫
|k|−1

(
eikxa†k + e−ikxak

)
dk,

rewritten in strong coupling units. The harmonic potential εα|x|2
2 is added for technical

reasons, and we assume that εα does not get too small or too large, to be precise we
assume α−N ≤ εα ≤ α

4
3 for some N ≥ 0. Note that this especially includes the constant

case εα = ε.

If we transform the Hamiltonian according to the unitary map Tψ(x) := α−
3
2 ψ(α−1x),

we obtain

T−1 Hα T = H(α),

with

H(α) = −1

2
∆ +

εα|x|2

2
+
∑
k∈Λ

a†kak + α n−
3
2

∑
k∈Λ

|k|−1
(
eikαxa†k + e−ikαxak

)
.

By applying the Feynman-Kac formula and integrating out the field variables, we
obtain

〈x|trF e−βH
(α) |x〉 =

(
tr e−β

∑
k∈Λ a

†
kak
)

(2πβ)−
3
2

×E0,0 e
− εα

2

∫ β
0 |Xs+x|

2 dse
α2
∫ β
0

∫ β
0

cosh(|t−s|−β2 )
2sinh(β2 )

f(αXs,αXt) dsdt

,

where Xs is a Brownian bridge from (0, 0) to (β, 0) and

f(x, y) := n−3
∑
k∈Λ

|k|−2eik(x−y).

By the substitution αXs ↔ Xα2s and rescaling in the integral as well as explicitly
expressing the trace over the Fock space, we obtain

〈x|trF e−βH
(α) |x〉

=
(

1− e−β
)−|Λ|

(2πβ)−
3
2 · E0,0 e

− εα
2

∫ β
0 |Xs+x|

2 dse
α−2

∫ α2β
0

∫ α2β
0

cosh(α−2|t−s|−β2 )
2sinh(β2 )

f(Xs,Xt) dsdt

≤
(

1− e−β
)−|Λ|

(2πβ)−
3
2 · E0,0 e

− εα
2

∫ β
0 |Xs+x|

2 dseα
−2
∫ α2β
0

∫ α2β
0

1
2

coth(β2 )f(Xs,Xt) dsdt,
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where we used cosh
(
|τ | − β

2

)
≤ cosh

(
β
2

)
in the last inequality. By applying Jensen’s

inequality to the probability measure β−1
∫ β

0 . dx, the convex function x 7→ e−βx and the

random variable s 7→ εα
2 |Xs+x|2, we obtain e−

∫ β
0
εα
2
|Xs+x|2 ds ≤ β−1

∫ β
0 e−β

εα
2
|Xs+x|2 ds.

Therefore, integration over the x variable yields∫
R
e−

εα
2

∫ β
0 |Xs+x|

2 ds dx ≤ β−1

∫ β

0

∫
R
e−β

εα
2
|Xs+x|2 dx ds =

∫
R
e−β

εα
2
|x|2 dx =

(
εαβ

2π

)− 3
2

.

With this at hand, we can estimate the trace of the semi-group by

tr e−βH
(α) ≤

(
1− e−β

)−|Λ|
(εαβ

2)−
3
2 · E0,0 e

α2 1
2

coth(β2 )α−4
∫ βα2

0

∫ βα2

0 f(Xs,Xt) dsdt

=
(

1− e−β
)−|Λ|

(εαβ
2)−

3
2 · E0,0 e

α2βFβ [τ (α2β)],

where τ (T ) := T−1
∫ T

0 δXs ds is the normalized occupation time of Xs and

Fβ[µ] :=
β

2
coth

(
β

2

)∫
n−3

∑
k∈Λ

|k|−2eik(x−y) (µ⊗ µ) (dx,dy).

Consequently,

e−βE0(α) ≤ tr e−βH
(α) ≤

(
1− e−β

)−|Λ|
(εαβ

2)−
3
2E0,0 e

α2βFβ [τ (α2β)].

With the definition Fpol(α, β) := −β−1logE0,0 e
α2βFβ [τ (α2β)], we can write this as

E0(α) ≥ Fpol(α, β) + |Λ|β−1 log
(

1− e−β
)

+
3

2
β−1 log

(
εαβ

2
)
.

The main effort will be, to verify the following theorem:

Theorem 0.1. Let T0 > 0. For α2β ≥ T0, the free Polaron energy can be estimated by

Fpol(α, β) + α2γp(β) ≥ −Cβ−1 log(α2β)− C ′β−1,

where we define

γp(β) := sup
‖φ‖L2=1

(
β

2
coth

(
β

2

)∫ ∫
n−3

∑
k∈Λ

|k|−2eik(x−y)|φ(x)|2|φ(y)|2 dxdy −
∫
|∇φ(x)|2 dx

)
.
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Furthermore, we will show:

Theorem 0.2. There exists a constant C, such that for all α > 0, we can estimate

E0(α) + α2γp ≤ C
√
εα.

From this, we can deduce the following corollary:

Corolary 0.3. (Estimate on the ground state energy)

Let α−N ≤ εα ≤ α
4
3 logα for some N ∈ N. Then there exist an α0 and constants

A,B such that for all α ≥ α0

|E0(α) + α2γp| ≤ C α
2
3 logα,

where γp := γp(0).

Proof. Using the theorem above, we obtain

E0(α) + α2γp

≥ Fpol(α, β) + α2γp(β) + (α2γp(1)− α2γp(β)) + |Λ|β−1 log
(

1− e−β
)

+
3

2
β−1 log

(
εαβ

2
)

≥ C1β
−1 log(β)− C2β

−1 log(αβ)− C4β
−1 + α2(γp(1)− γp(β)).

Let the functional value of φ be ε close to γp(β). Since f is bounded by some constant
D and ‖φ‖L2 = 1, we have for all ε > 0 (and therefore also for ε = 0)

γp(1) ≥
∫ ∫

f(x, y)|φ(x)|2|φ(y)|2 dxdy −
∫
|∇φ(x)|2 dx

≥ β

2
coth

(
β

2

)∫ ∫
f(x, y)|φ(x)|2|φ(y)|2 dxdy −

∫
|∇φ(x)|2 dx−

(
β

2
coth

(
β

2

)
− 1

)
D

= γp(β)− ε−
(
β

2
coth

(
β

2

)
− 1

)
D1.

Note that β
2 coth

(
β
2

)
− 1 ≤ D2β

2 for a large enough constant D2. Hence,

γp(1) ≥ γp(β)− C3β
2.

Together with α−N ≤ εα, this leads to the inequality

E0(α) + α2γp ≥ C1β
−1 log(β)− C2β

−1 log(αβ)− C3α
2β2 − C4β

−1

for all α, β. With the choice β(α) := α−
2
3 we obtain for all α (note that still α2β →∞)

E0(α) + α2γp ≥ −C ′1α
2
3 log(α)− C ′2α

2
3 log(α)− C ′3α

2
3 .

The upper bound follows immediately from Theorem 0.2 together with the assumption
εα ≤ α

4
3 logα.
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Reduction to a finite dimensional Problem

Definition 0.4. Let L ⊂ Λ such that Λ = L∪̇(−L). Then we define the random vector
V := (Vk)k∈Λ :M(R3)→ RΛ as

Vk(τ) :=

{∫
cos(k · x) τ(dx), k ∈ L∫
sin(k · x) τ(dx), k ∈ −L.

Furthermore, let fβ : RΛ → R bet defined as

fβ(v) := βcoth

(
β

2

)
n−3

∑
k∈Λ

|k|−2|vk|2.

Note that we can write the random variable Fβ as Fβ = fβ ◦ V . Therefore, we can
reduce the original problem to a finite dimensional one. To make this precise, we will
define a measure on a subset of RΛ and investigate the large deviations of the random

variable fβ instead of Fβ. For convenience, we will denote with Aβj,n := f−1
β

(
( jn ,∞)

)
the upper level sets of fβ.

Definition 0.5. We define on RΛ, equipped with the Borel algebra, the probability mea-
sure PT := Law

(
V ◦ τ (T )

)
. Note that for a bounded and measurable function f : RΛ → R∫

f dPT = E0,0 f
(
V ◦ τ (T )

)
.

Especially,

E0,0 e
α2βFβ [τ (α2β)] =

∫
eα

2βfβ dPα2β.

We have seen in the introduction that the Dirichlet form E [φ] :=
∫
|∇φ|2 dx plays an

important role. By identifying a function φ with the measure dµ = φ2dx we can lift the
Dirichlet form to a functional defined on the space M(R3). This form is then usually
called the Fisher information. Furthermore, we use the random vector V to transport
this definition to RΛ.

Definition 0.6. We define the functional IFisher :M(R3)→ R ∪ {+∞} as

IFisher[τ ] :=

{∫
|∇φ|2 dx, dτ = φ2dx with φ ≥ 0

+∞, otherwise.
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With this at hand, we define I : RΛ → R ∪ {+∞} by the formula

I[v] := inf
τ :V (τ)=v

IFisher[τ ].

Furthermore, let us denote with Ω := [I < +∞] the set where I is finite and with G := I∗

the convex conjugate of I, i.e.

G(a) := sup
v∈RΛ

(a · v − I[v]) .

Lemma 0.7. Let f : RΛ → R. Then we have the identity

sup
τ∈M(R3)

(
f (V (τ))− IFisher[τ ]

)
= sup

v∈RΛ

(
f(v)− I[v]

)
.
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Lower Bound on the Ground State Energy

The following three theorems are the milestones in proving Theorem 0.1. We follow the
strategy of [4], with the difference that we try to obtain a more quantitative version of
the asymptotic results. The proof of each of the theorems is dependent on the statement
of the subsequent one. The proofs will also involve crucial lemmas from the last section.
In the first theorem we will get our input information on the measure PT by applying
Feynman-Kac, which will yield us a Laplace principle for linear functions. From this we
deduce the next theorem, which is a quantitative version of a Large Deviation result for
the occupation time measure PT , see also [2]. This can then be used to prove the last
theorem by a modified version of the Varadhan Lemma (see [5] Theorem 27.10), which
is a gain a Laplace principle, but this time for the functional fβ in which we are actually
interested.

Theorem 0.8. Let T0 > 0. Then for all a ∈ RΛ and T ≥ T0, we have the estimate

log

∫
eT (a·v) PT (dv)− T G(a) ≤ 3

2
log T + c1|a|.

Theorem 0.9. Recall the definition Aβj,n := f−1
β

(
( jn ,∞)

)
. Then, for all M > 0, β ≤ β0,

T ≥ T0 and all j, n such that inf
v∈Aβj,n

I[v] ≤M , we have the uniform estimate

logPT
(
Aβj+1,n

)
+ T inf

v∈Aβj,n
I[v] ≤ c2 log(T ) + c3 log(n) + c4.

Theorem 0.10. For all β ≤ β0 and T ≥ T0, we can estimate the integral

log

∫
eTfβ dPT − T sup

v∈RΛ

(fβ(v)− I[v]) ≤ c5 log(T ) + c6.

Proof. (Theorem 0.8)
For a ∈ RΛ let us define the potential

h(x) :=
∑
k∈L

ak cos(k · x) +
∑
k∈−L

ak sin(k · x).
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Applying Feynman-Kac yields

〈0|e−T (−∆−h)|0〉 = (2πT )−
3
2E0,0e

∫ T
0 h(Xs) ds = (2πT )−

3
2E0,0e

Ta·V (τ (T ))

= (2πT )−
3
2

∫
eTa·v PT (dv).

Let us define the modified potential h̃ := h−G(a). Since

G(a) = sup
v∈RΛ

(a · v − I[v]) = sup
τ∈M(R3)

(∫
h dτ − IFisher[τ ]

)
= sup
‖φ‖L2=1

(∫
h|φ|2dx− E [φ]

)
is the negative of the ground state energy corresponding to −∆− h, we obtain that the
operator −∆− h̃ is positive. Hence, we have for T ≥ T0

〈0|e−T (−∆−h)|0〉 = eTG(a) 〈0|e−T (−∆−h̃)|0〉 ≤ eTG(a) 〈0|e−T0(−∆−h̃)|0〉

= eTG(a)(2πT0)−
3
2E0,0e

∫ T0
0 h̃(Xs) ds ≤ eTG(a)(2πT0)−

3
2 e2T0‖h‖.

Using ‖h‖∞ ≤ c′1|a|, we obtain

log

∫
eTa·v PT (dv) ≤ TG(a) +

3

2
log T + c1T0|a| −

3

2
log (2πT0) .

Proof. (Theorem 0.9)
Let us define the half spaces Ha := {v : a · v ≤ G(a) + s}. Then it is clear that,

[I ≤ s] =
⋂
a∈RΛ

Ha.

For s := inf
v∈Aβj,n

I[v], let a1, .., ap be as in Lemma 0.21. Then we know that Aβj+1,n = [fβ >

x] with x := j+1
n and [I ≤ s] are separated by the intersection of p ≤ Cn2|Λ| half spaces⋂p

i=1Hi with Hi := Hai . Consequently,

PT (Aβj+1,n) ≤
p∑
i=1

PT (Hc
i ) ≤

p∑
i=1

∫
eT (ai·v−G(ai)−s) PT (dv)

≤ pe−Ts sup
i
e−TG(ai)

∫
eTai·v PT (dv).
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Therefore we obtain, using Theorem 0.8

logPT (Aβj+1,n) ≤ −Ts+ log(p) + sup
i

(
−TG(ai) + TG(ai) +

3

2
log T + c1|ai|

)
≤ −Ts+ 2|Λ| log(n) +

3

2
log T + c1CM .

Proof. (Theorem 0.10)
Let us define M0 := ‖f1‖∞ − γp(0) and jβ(n) as the smallest index such that

inf
v∈Aβ

jβ(n),n

I[v] ≥M0.

By Lemma 0.22, we know that there exists a M <∞, such that

inf
v∈Aβj,n

I[v] ≤M

for all j ≤ jβ(n) + 1. Let us now define a partition of the measure space, given by

Bj := Aβj,n \A
β
j+1,n for j ≤ jβ(n) and Bjβ(n)+1 := Aβjβ(n)+1,n. Then we obtain

∫
eTfβ dPT ≤

jβ(n)+1∑
j=0

∫
Bj

eTfβ dPT ≤
jβ(n)∑
j=0

eT
j+1
n PT (Aβj,n) + eT‖f‖∞PT (Aβjβ(n)+1,n)

≤ n‖fβ‖∞ sup
j≤jβ(n)

eT
j+1
n PT (Aβj,n) + eT‖fβ‖∞PT (Aβjβ(n)+1,n).

By applying Theorem 0.9, we can estimate both terms. We start by estimating the
logarithm of the second one

log
(
eT‖fβ‖∞PT (Aβjβ(n)+1,n)

)
≤ T‖fβ‖∞ − T inf

v∈Aβ
jβ(n),n

I[v] + c2 log(T ) + c3 log(n) + c4

≤ T (‖fβ‖∞ −M) + c2 log(T ) + c3 log(n) + c4.

9



We can compare γp(0) ≤ γp(β) and for β ≤ 1 also ‖fβ‖∞ ≤ ‖f1‖∞. Consequently,

log
(
eT‖fβ‖∞PT (Aβjβ(n)+1,n)

)
≤ Tγp(β) + c2 log(T ) + c3 log(n) + c4.

For the other term, we have

log

(
n‖fβ‖∞ sup

j≤jβ(n)
eT

j+1
n PT (Aβj,n)

)

≤ log(n‖fβ‖∞) + T sup
j≤jβ(n)

(
j + 1

n
− inf
v∈Aβj−1,n

I[v]

)
+ c2 log(T ) + c3 log(n) + c4

≤ T sup
j≤jβ(n)

sup
v∈Aβj−1,n

(fβ(v)− I[v]) +
2T

n
+ c′2 log(T ) + c′3 log(n) + c′4

≤ Tγp(β) +
2T

n
+ c′2 log(T ) + c′3 log(n) + c′4.

Using the inequality log(A+B) ≤ log(2) + max{log(A), log(B)} leads to

log

∫
eTfβ dPT ≤ Tγp(β) +

2T

n
+ c′′2 log(T ) + c′′3 log(n) + c′′4.

With the choice n := T , the statement of the Theorem follows.
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Auxiliary Tools

Lemma 0.11. The functional I : RΛ → R ∪ {∞} is convex.

Proof. First, we verify that the Fisher information IFisher is convex. To do so, let τ be an
arbitrary measure with a smooth density function, i.e. a measure which can be written
as dτ = fdx. Then we can compute

IFisher[τ ] =

∫
|∇
√
f |2 dx =

∫
|∇
√
f |2 dx =

∫
|∇f |2

f
dx.

Since the function φ(x, y) := |x|2
y is a convex function defined on R3 × R+, we obtain

that IFisher[τ ] =
∫
φ(∇f, f) dx is a convex functional.

To verify that I is convex as well, let us consider a convex combination v = t1v1 + t2v2 ∈
RΛ. It is clear that every measure τ which can be written as τ = t1τ1 + t2τ2 with
V (τi) = vi, satisfies V (τ) = v. Consequently,

I[v] = inf
τ :V (τ)=v

IFisher[τ ] ≤ inf
τ1,τ2:V (τi)=vi

IFisher[t1τ1 + t2τ2]

≤ inf
τ1,τ2:V (τi)=vi

(t1IFisher[τ1] + t2IFisher[τ2])

= t1 inf
τ1:V (τ1)=v1

IFisher[τ1] + t2 inf
τ1:V (τ1)=v1

IFisher[τ2]

= t1I[v1] + t2I[v2].

Definition 0.12. In the following, let us denote

E [φ] :=

∫
|∇φ|2.

Lemma 0.13. (IMS localization formula)
For all δ, ε with 0 < δ < ε, we can find C∞ functions 0 ≤ χ1, χ2 ≤ 1, such that χ1(x) = 1
for all x ∈ [h > ‖h‖∞ − δ], χ1(x) = 0 for all x ∈ [h ≤ ‖h‖∞ − ε] and

χ2
1 + χ2

2 = 1.

Furthermore, we have for all φ ∈ L2

E [φ] = E [χ1φ] + E [χ2φ]−
∫ (
|∇χ1|2 + |∇χ2|2|

)
φ2.

Proof. The second part of the lemma follows simply by computations, therefore let us
only prove the first part. Since X1 := [h ≤ ‖h‖∞ − ε] is a closed set which is disjoint to
the closed set X2 := [h ≥ ‖h‖∞ − δ], we can find a r > 0 such that even X1 +B2r(0) is
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disjoint to X2 +B2r(0). Note that we have to use the periodicity of h at this point, since
we cannot assume that X1, X2 are compact sets. Let us define fi as the characteristic
function of the set (Xi +Br(0))c and gi := φ ∗ fi, where φ is a mollifier with support
contained in Br(0). It is clear that gi|Xi = 0 as well as gi(x) = 1 for x ∈ (Xi +B2r(0))c.
Since X1 +B2r(0) is disjoint to X2 +B2r(0), we know that either x ∈ (X1 +B2r(0))2 or
x ∈ (X2 +B2r(0))2. Therefore,

g2
1 + g2

2 ≥ 1.

Consequently, the functions χi :=
(
g2

1 + g2
2

)− 1
2 gi are C∞ and satisfy 0 ≤ χi ≤ 1 as well

as

χ2
1 + χ2

2 = 1.

It is immediately clear that χ1|X1 = 0. Finally, an element x in [h > ‖h‖∞ − δ] is
especially an element in X2. Therefore, we know that g2(x) = 0 and consequently

χ1(x) =
(
g1(x)2

)− 1
2 g1(x) = 1.

Lemma 0.14. (IMS localization formula-infinite version)

Recall the definition Λ := {k ∈
(
n−1Z

)3
: 0 < |k| ≤ m}. We define G := [0, 2πn]3 as

the smallest unit of periodicity, concerning the functions eik·x with k ∈ Λ. Furthermore,
we denote G` := G + (2πn)` for ` ∈ Z3. Then, there exist functions (χ`)`∈Z3 such that
0 ≤ χ` ≤ 1, χ`|G` = 1, χ`|G`′ = 0 for all |`− `′| > 1 and∑

`

χ2
` = 1.

Furthermore, there exists a constant C, such that we have for all φ ∈ L2

E [φ] ≥
∑
`

E [χ`φ]− C
∫
φ2.

Proof. Let 0 ≤ g ≤ 1 be a C∞ function, which satisfies g|G = 1 and g|G` = 0 for all
|`| > 1. We define g`(x) := g`(x− `). It is clear, that for all x ∈ R3, there exist at most
six indices `1, .., `6 such that g`(x) 6= 0. Therefore, 0 ≤

∑
` g

2
` ≤ 6 and this sum is a C∞

function as well, since for all compact subsets only a finite number of indices yield a non
zero contribution. It is easy to check, that the functions

χ` :=

(∑
`′

g2
`′

)− 1
2

g`
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have the right properties. For the last inequality of the lemma, note that for all x ∈ R3

only six indices `1, .., `6 satisfy |∇χ`| 6= 0 and since the different functions are translations
of each other, we have the uniform bound |∇χ`| ≤ C ′ for some C ′. If we define C := 6C ′

we obtain

E [φ] ≥
∑
`

E [χ`φ]−
∫ (∑

`

|∇χ`|2
)
φ2 ≥

∑
`

E [χ`φ]− C
∫
φ2.

Lemma 0.15. For a non zero a ∈ RΛ, let us define the function h : R3 → R

h(x) :=
∑
k∈L

ak cos(k · x) +
∑
k∈−L

ak sin(k · x).

Then, the set S := [h = ‖h‖∞] has zero volume, i.e.∫
S

1 dx = 0.

Proof. Let us define

h̃ := h− ‖h‖∞ = −‖h‖∞ · 1 +
∑
k∈L

ak cos(k · .) +
∑
k∈−L

ak sin(k · .).

Note that 0 /∈ Λ, therefore the functions 1, sin(k · .), cos(k · .) are linearly independent.
Since a 6= 0, this implies that h̃ is not constant equals 0, and therefore we know from [6]
that [h̃ = 0] = [h = ‖h‖∞] is a set with zero volume.

Lemma 0.16. Let Sε := [h ≥ ‖h‖∞ − ε]. Then Sε gets thinner for ε → 0, in the sense
that cε goes to infinity for ε→ 0, where cε is defined as

cε := sup
φ
E [φ]

and the supremum is take over all ‖φ‖ = 1 which have their support in Sε.

Proof. We know that from Lemma 0.15, that S := [h = ‖h‖∞] has zero volume. If we
define G+

` :=
⋃
|`′−`|≤1G`′ as the second unit of periodicity (compare with Lemma 0.14),

then Lemma 0.15 tells us ∫
G+
` ∩Sε

1 dx −→
ε→0

∫
G+
` ∩S

1 dx = 0.
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Therefore, the constant c′ε defined as

c′ε := sup
φ
E [φ]

where the supremum is take over all ‖φ‖ = 1 which have their support in G+
` ∩ Sε, goes

to infinity for small ε. Note that due to the periodicity, c′ε is really a ` independent
quantity. Note that for all normed φ with support in Sε, the corresponding functions
χ`φ from Lemma 0.14 have their support contained in G+

` ∩ Sε. We conclude

E [φ] ≥
∑
`

E [χ`φ]− C ≥ c′ε
∑
`

∫
(χ`φ)2 − C = c′ε − C −→

ε→0
∞.

Lemma 0.17. The set Ω := [I <∞] is open and for all sequences vn −→
n→∞

v ∈ ∂Ω with

a limit in the boundary of Ω, we have

lim
n→∞

I[vn] =∞.

Proof. Let v ∈ ∂Ω ⊂ RΛ. Since I is a convex functional, we know that the Ω is a convex
set. Therefore, there exists an a ∈ RΛ \ {0} such that

a · v = sup
v′∈Ω

a · v′. (1)

With this a at hand, let us define in the spirit of Lemma 0.16 the function h : R3 → R

h(x) :=
∑
k∈L

ak cos(k · x) +
∑
k∈−L

ak sin(k · x).

Let τ be any measure, such that V (τ) = v. Then we can rewrite Equation (1) as∫
h dτ = sup

τ ′:IFisher[τ ′]<∞

∫
h dτ ′ = ‖h‖∞.

By the definition of cε in Lemma 0.16, it is clear that IFisher[τ ] ≥ cε, and therefore we
have by the statement of Lemma 0.16

IFisher[τ ] ≥ cε −→
ε→0
∞.

Consequently, v /∈ Ω since there is no realization V (τ) = v with finite Fisher information.
This tells us, that Ω is disjoint to its boundary, and hence it is an open set.
Let us now consider an arbitrary sequence vn −→

n→∞
v converging to v. It is clear that

a · vn −→
n→∞

a · v = ‖h‖∞. Therefore, for all t > 0 there exists a n0 such that for all

n ≥ n0, we have a · vn ≥ ‖h‖∞ − t. This means for any realization V (τ) = vn of vn, we

14



have
∫
h dτ ≥ ‖h‖∞− t. For arbitrary ε > 0 and q > 0 we can find t small enough, such

that this leads to

τ
(

[h ≤ ‖h‖∞ −
ε

2
]
)
< q.

In the following let χ1, χ2 be as in Lemma 0.13 for δ := ε
2 and let us define Cε :=

‖∇χ1‖∞ + ‖∇χ2‖∞. If IFisher[τ ] is finite, then we can write dτ = φ2dx and we define
φ1 := χ1φ as well as φ2 := χ2φ. Note that the support of φ1 is contained in the set Sε
from Lemma 0.16, and therefore E [φ1] ≥ cε‖φ1‖2. We also know that ‖φ1‖2 + ‖φ2‖2 = 1
as well as ‖φ2‖2 ≤ q since we know that τ

(
[h ≤ ‖h‖∞ − ε

2 ]
)
< q as well as that the

support of χ2 is contained in [h ≤ ‖h‖∞ − ε
2 ]. If we combine these results and use that

∇χi has a support contained in [h ≤ ‖h‖∞ − ε
2 ], we obtain

IFisher[τ ] = E [φ] ≥ E [φ1] + E [φ2]− Cτ
([
h ≤ ‖h‖∞ −

ε

2

])
≥ cε(1− q)− Cεq.

If we chose q small enough, we obtain for all n ≥ n(ε) big enough and all τ which satisfy
V (τ) = vn, that

IFisher[τ ] ≥ 1

2
cε − 1.

Since the right hand side goes to ∞ for ε→ 0, we conclude

lim
n→∞

I[vn] =∞.

Corolary 0.18. The functional I is lower semi-continuous. Therefore, the convex con-
jugate acts as an involution I∗∗ = I.

Lemma 0.19. The sets [fβ ≤ x] and [fβ > x + δ] can be separated by at most Cδ−2|Λ|

half spaces, where C does not depend on x as long as x + δ ≤ x0 for some x0. This
means, there exist half spaces Q1, .., Qm with m ≤ Cδ−2|Λ| such that

[fβ ≤ x] ⊂
m⋂
i=1

Qi ⊂ [fβ ≤ x+ δ].

Proof. Let us define the linear map L : RΛ → RΛ by L(v) :=
(
β
2 coth

(
β
2

)
|k|2vk

)
k

as

well as the sets X := L ([fβ ≤ x]) and Y := L ([fβ ≤ x+ δ]). By the definition of fβ it is
clear that X = B√x(0) and Y = B√x+δ(0) are balls with radius r1 :=

√
x, respectively

r2 :=
√
x+ δ. Since x + δ ≤ x0, we have r2 − r1 ≥ (2

√
x0)−1δ. A ball of radius r1 and

one of radius r2 in a d := |Λ| dimensional space can be separated by D(r2 − r1)−2d half
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spaces V1, .., Vm with m ≤ D(r2 − r1)−2d ≤ D̃δ−2|Λ|. Therefore, the half
spaces Qi := L−1(Vi) satisfy the claim of the Lemma.

Lemma 0.20. Let P :=
⋂M
i=1Qi ⊂ Rd be a non empty intersection of finitely many half

spaces Qi and Q another half space with P ⊂ Q. Then, there exist i1, .., id+1 ∈ J which
already satisfy

d+1⋂
k=1

Qik ⊂ Q.

Proof. Let us write the half spaces as Q = {v : a · v ≤ s} and Qi = {v : ai · v ≤ si}.
With the definition s∗ := sup

v∈P
(a · v) and Q∗ := {v : a · v ≤ s∗} we obtain that there

exists a v0 ∈ ∂P with a · v0 = s∗ as well as the inclusion P ⊂ Q∗ ⊂ Q. Furthermore, we
denote with Nv0 ⊂ Rd the normal cone of P at v0, i.e. the set of all directions b such
that b · (v0 − v) ≥ 0 for all v ∈ P . It is clear that a ∈ Nv0 .
Note that P is a convex polytope, defined by the collection of linear inequalities ai·v ≤ si.
This implies, that the normal cone is the convex cone generated by the elements ai, which
satisfy ai · v0 = si, i.e.

Nv0 = c ({ai : i ∈ I(v0)})

where I(v0) is the set of all i which satisfy ai · v0 = si. Let Γ be a possible infinite
triangulation of this cone, i.e. Γ = {γj : j ∈ J} is a collection of d + 1 simplices γj
such that the union of all simplices is Nv0 and the extreme points of the γj are subsets
of {λai : i ∈ I(v0), λ ≥ 0}. Furthermore, the γj also satisfy a ”disjointness” property,
which we do not need in the following. Since a ∈ Nv0 , there exists a simplex γ ∈ Γ
with a ∈ γ. From the properties of a triangulation follows, that we can write γ =
conv(λ1ai1 , .., λd+1aid+1

) as the convex set, generated by the points λ1ai1 , .., λd+1aid+1
.

Therefore, there exist 0 ≤ t1, .., tn such that a = t1ai1 + ..+ td+1aid+1
. Consequently,

Qi1 ∩ .. ∩Qid+1
⊂ Q∗ ⊂ Q.

Lemma 0.21. Let s := inf
v∈Aβj,n

I[v] ≤ M . Then we can find a1, .., ap with p ≤ Cn2|Λ| as

well as |ai| ≤ CM , such that the half spaces

Hi := {v : ai · v ≤ G(ai) + s}

separate the convex stets [I ≤ s] and Aβj+1,n.
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Proof. Let us define x :=
j+ 1

2
n , y := j+1

n and δ := y − x = 1
2n . Then it is clear that

[fβ > y] = Aβj+1,n and

[I ≤ s] ⊂ [fβ < x].

Furthermore, we denote Ha := {v : a · v ≤ G(a) + s}. Since [I ≤ s] =
⋂
a∈RΛ Ha is

a compact set which is included in the open and bounded set [fβ < x] we obtain by
a compactness argument, that there exist finitely many Ha1 , ..,HaM such that already
P :=

⋂M
i=1Hai ⊂ [fβ < x]. By Lemma 0.19, we know that there exist half spaces

Q1, .., Qm with m ≤ Cn2|Λ| and

[fβ < x] ⊂
m⋂
l=1

Ql ⊂ Aβj+1,n.

Especially, P ⊂ Ql for all l = 1, ..,m. Therefore, we can apply Lemma 0.20 for P =⋂M
i=1Hai and each subspace Ql, which yields us the existence of indices ail,k with l =

1, ..,m and k = 1, .., |Λ| + 1, such that
⋂|Λ|+1
k=1 Hail,k

⊂ Ql. Consequently, the collection

of half spaces Hail,k
consists of at most C(|Λ| + 1)n2|Λ| elements and indeed separates

[I ≤ s] from Aβj+1,n, since

[I ≤ s] ⊂ P ⊂
⋂
l,k

Hail,k
⊂

m⋂
l=1

Ql ⊂ Aβj+1,n.

Finally, we have to verify that all a involved in this collection are bounded in a suitable
way. First we define K := [I ≤M ], where M is given by the assumption of the Lemma.
Since this is a compact set contained in the open set Ω := [I <∞], there exists an ε > 0,
such that the closure of K+ := K + Bε(0) is still contained in Ω. As a consequence,
sup
a∈K+

I[v] < ∞. Without loss of generality, we can assume that all Ha involved in the

separation of [I ≤ s] from Aβj+1,n are approximately tangent spaces, in the sense that

there exists a v ∈ RΛ such that a · v = G(a) + s and dist(v, [I ≤ s]) < ε
2 . Therefore,

a · v ≥ G(a) = sup
w∈RΛ

(a · w − I[w]) ≥ a ·
(
v +

ε

2|a|
a

)
− I

[
v +

ε

2|a|
a

]
.

Rearranging the inequality above and using the assumption s ≤M yields

|a| ≤ 2

ε
I

[
v +

ε

2|a|
a

]
≤ 2

ε
sup
a∈K+

I[v] =: CM <∞.
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Lemma 0.22. For a given M0 <∞ let jβ(n) be the smallest index such that

inf
v∈Aβ

jβ(n),n

I[v] ≥M0.

Then, one can can find a M < ∞ and β0, n∗, such that for all β ≤ β0, n ≥ n∗ and
j ≤ jβ(n) + 1

inf
v∈Aβj,n

I[v] ≤M.

Proof. Let us define y′ := max f0 ([I ≤M0]). If we take ε small enough and define
y := y′+ ε, we know that M := inf

f0(v)>y
I[v] <∞. Let us take β0 small enough, such that

‖fβ − f0‖ < ε
3 for all β ≤ β0 and n∗ big enough such that 1

n <
ε
3 for all n ≥ n∗. If we

can show that
jβ(n)+1

n ≤ y, we are done since this implies for all j ≤ jβ(n) + 1

inf
fβ(v)> j

n

I[v] ≤ inf
f0(v)>y

I[v] = M.

We are going to verify
jβ(n)+1

n ≤ y by contradiction. Therefore, let us assume
jβ(n)+1

n > y.

This implies
jβ(n)−1

n > y′ + ε
3 . Since max fβ ([I ≤M0]) ≤ y′ + ε

3 , it is clear that for all

v ∈ Aβjβ(n)−1,n we have fβ(v) > max fβ ([I ≤M0]). Therefore, we have already for the

index jβ(n)− 1 the estimate

inf
v∈Aβ

jβ(n)−1,n

I[v] ≥M0.

A contradiction to the definition of the index jβ(n).
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Upper Bound on the Ground State Energy

In this section, we want to prove the upper bound on the ground state energy given by
Theorem 0.2. We will achieve this by computing the energy of suitable test functions.
Before we can turn to the proof of the theorem, we need to prove the following Lemma:

Lemma 0.23. Let g : R3 → R be a function with ‖g‖ = 1. Furthermore, let L =
k2πn be a multiple of the periodicity 2πn. Then we can find a modified version g̃ with
supp(g̃) ⊂ [−2L, 2L]3, ‖g̃‖ = 1,

∫
|∇g̃|2 dx ≤

∫
|∇g|2 dx+ CL−2 and∫ ∫

n−3
∑
k∈Λ

|k|−2eik(x−y)|g̃(x)|2|g̃(y)|2 dxdy =

∫ ∫
n−3

∑
k∈Λ

|k|−2eik(x−y)|g(x)|2|g(y)|2 dxdy.

Proof. Similar to the IMS formula in 0.14, we construct a smooth quadratic partition
of the whole space. First of all, let h be a smooth function which is one on [−1, 1]3

and has a support contained in [−2, 2]3. For ` ∈ Z3 we define the translated version

h`(x) := h(x− `) and H`(x) :=
(∑

`′ h`′(x)
)− 1

2h`(x). It is clear that this these functions
form a quadratic partition of the whole space and

∑
` |∇H`|2 ≤ C for some constant C.

Now we define the final partition as χ`(x) := H`(L
−1x). It is clear that this is again

a smooth quadratic partition, now with the support property supp (χ`) ⊂ [−2L, 2L]3.
The gradient can be estimated by∑

`

|∇χ`|2 ≤ CL−2.

Let us define the measures τ, τ`, τ
′, τ ′` by dτ = g2dx, dτ` = (χ`g)2 dx as well as the

translated versions τ ′` := τ`(.+ `L) and τ ′ :=
∑

` τ
′
`. Note that it is clear that τ =

∑
` τ`

and that τ ′ is like τ a probability measure. The advantage of the rearranged measure
τ ′ is that it has a support contained in [−2L, 2L]3. Let us verify the bounds on the
Fisher information, which is just the Dirichlet form on the level of measures. From the
properties of a quadratic partition of unity, it is clear that∑

`

IFisher[τ
′
`] = IFisher[τ ] +

∫ ∑
`

|∇χ`|2 dτ ≤ IFisher[τ ] + CL−2,

where we used that the Fisher information is translation invariant IFisher[τ
′
`] = IFisher[τ`].

Furthermore, we know that IFisher is a convex functional and it is obvious that it scales
like IFisher[λµ] = λIFisher[µ] for a positive number λ, if we allow it to be defined on all
measures and not only probability measures. Therefore, IFisher is even sub-linear, which
implies

IFisher[τ
′] ≤

∑
`

IFisher[τ
′
`] ≤ IFisher[τ ] + CL−2.
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Finally, note that the function f(x, y) := n−3
∑

k∈Λ |k|−2eik(x−y) is periodic, in the sense
that f(x− `L, y − `′L) = f(x, y). Therefore,∫
f(x, y) τ ′ ⊗ τ ′(dx,dy) =

∑
`,`′

∫
f(x, y) τ ′` ⊗ τ ′`′(dx, dy) =

∑
`,`′

∫
f(x− `, y − `′) τ` ⊗ τ`′(dx

=
∑
`,`′

∫
f(x, y) τ` ⊗ τ`′(dx,dy) =

∫
f(x, y) τ ⊗ τ(dx, dy).

From these properties on τ ′, it is clear that the square root of the density function

g̃ :=

√
dτ

dx
= χ0(x)

√∑
`

g2(x+ `L)

satisfies the desired properties.

Proof. (Proof of Theorem 0.2)
Let us consider the test function Ψ := g ⊗ φ, which should be the product of a scalar
function ‖g‖L2 = 1 and the coherent state in the many particle space given by

φ := g(x) e
− α√

2

∑
k∈Λ

(
cka
†
k−ckak

)
· |0〉 ,

where we define the coefficients as ck := −αn−
3
2 |k|−1

∫
|g(x)|2eiαkx dx. Note that Ψ has

norm one. Furthermore, we compute

〈Ψ| a†kak ·Ψ〉 = e−|ck|
2

n∑
n=0

n
|ck|2

n!

∫
|g(x)|2 dx = |ck|2.

Let us write eiαkx̂ for the multiplication operator by eiαkx and compute

〈Ψ| αn−
3
2 |k|−1eiαkx̂a†k ·Ψ〉 = e−|ck|

2
∑
n,m

δm,n+1

√
n+ 1

c̄mk c
n
k√

n!m!
αn−

3
2 |k|−1

∫
eiαkx|g(x)|2 dx

= e−|ck|
2
∑
n

(
|ck|2

)n
c̄k

n!
(−ck) = −|ck|2.

Since this is a real number, it is clear that 〈Ψ| αn−
3
2 |k|−1e−iαkx̂ak ·Ψ〉 = −|ck|2 as well.

If we combine the results, we obtain the following upper bound on the ground state
energy

E0(α) ≤ 〈Ψ|Hα|Ψ〉 =

∫
|∇g|2 dx+

∫
εα
2
|x|2|g(x)|2 dx−

∑
k

|ck|2

=

∫
|∇g|2 dx+

∫
εα
2
|x|2|g(x)|2 dx−

∑
k∈Λ

α2n−3|k|−2

∫ ∫
eikα(x−y)|g(x)|2|g(y)|2 dxdy.
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Since the inequality above holds for all g with ‖g‖ = 1, we obtain by rescaling

E0(α) ≤ α2

(∫
|∇g|2 dx+

∫
εα

2α4
|x|2|g(x)|2 dx−

∫ ∫
n−3

∑
k∈Λ

|k|−2eik(x−y)|g(x)|2|g(y)|2 dxdy

)
.

Now we need to argue why we can omit the εα. To do so, let g be a function which mini-
mizes up to an error δ the functional

∫
|∇g|2 dx−

∫ ∫
n−3

∑
k∈Λ |k|−2eik(x−y)|g(x)|2|g(y)|2 dxdy,

i.e. ∫
|∇g|2 dx−

∫ ∫
n−3

∑
k∈Λ

|k|−2eik(x−y)|g(x)|2|g(y)|2 dxdy < −γp + δ.

From Lemma 0.23 we know that there exists for all L a function g̃ with ‖g̃‖ = 1,
supp(g̃) ⊂ [−2L, 2L]3 as well as

∫
|∇g̃|2 dx ≤

∫
|∇g|2 dx+ CL−2, while satisfying∫ ∫

n−3
∑
k∈Λ

|k|−2eik(x−y)|g̃(x)|2|g̃(y)|2 dxdy =

∫ ∫
n−3

∑
k∈Λ

|k|−2eik(x−y)|g(x)|2|g(y)|2 dxdy.

If we use g̃ as a test function, we obtain for all δ > 0 and L

E0(α) ≤ α2

(
−γp + δ + CL−2 +

6εα
α4

L2

)
.

Sending δ → 0 and taking the optimal L := α (6εα)−
1
4 yields

E0(α) + α2γp ≤ D
√
εα.
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