
The Vector Dyson equation for a class of skew-triangular

blockmatrices

Asbjørn Bækgaard Lauritsen*

2021-03-01

Abstract

Westudyaclassof skew-triangularblock randommatricesandcompute their self-consistent

density of states. We showthat the self-consistent density of states diverges as apower lawwith

exponent−=−1
=+1 at 0, where = × = is the number of blocks in thematrix.

1 Introduction

For a Hermitian random matrix � = (ℎ8 9 )1≤8, 9≤# with independent entries (up to the symmetry)

with mean values 0 and variances ( = (B8 9 )1≤8, 9≤# we have the vector Dyson equation

−1
m = I + (m

with I, <1, . . . , <# ∈ H = {I ∈ C : Im I > 0}. Here we abuse notation and write −1
m =

(−1/<1, . . . ,−1/<# ) . This equation has a unique solution [1, Theorem 6.1.4]. Note that this equa-

tion has the symmetry

I → −I and m → −m.

Solving this equation wemay find the self-consistent density of states

d(�) = lim
[↘0

1
c
〈Im m(� + 8[)〉 = lim

[↘0

1
c#

#∑
:=1

Im<: (� + 8[).

This (deterministic) object will in general approximate the (random) eigenvalue distribution of �

if # is large, see [1]. By the symmetry of the equation d is an even function. We will here study the

vector Dyson equation for a class of =# × =# matrices with

( =



B11 B12 · · · B1(=−1) B1=
B21 B22 · · · B2(=−1) 0
...

...
. . .

...
...

B(=−1)1 B(=−1)2 · · · 0 0
B=1 0 · · · 0 0


,
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2 CONSTANT VARIANCE

where the B8 9 are # × # matrices such that
(
B8 9

)
:;

≠ 0 if 8 + 9 ≤ = + 1 and B8 9 = 0 if 8 + 9 > = + 1.
The vector Dyson equation then takes the form

−1
m:

= I +
=+1−:∑
9=1

B: 9m 9 , : = 1, . . . , =,

where we split m according to the blocks, i.e. m = (m1, . . . ,m=). We expect that for reasonable

assumptions on the B8 9 we have

Conjecture 1.1. As � → 0 we have d(�) ∼ |� |− =−1
=+1 .

Here we write 5 (G) ∼ 6(G) as G → 0 if there exists constants 2, � > 0 with 2 |6(G) | ≤ | 5 (G) | ≤
� |6(G) | for all sufficiently small G.

2 Constant variance

We will first consider the case where
(
B8 9

)
:;
are all the same value, which by scaling we may take

to be
(
B8 9

)
:;

= 1. In this case all components of m: are the same - they satisfy the same equation.

Wewill thus just write this component as<: . Similarly the action of B8 9 is just multiplication of the

value of any of its (all identical) entries 1. Thus, wewill just treat it as a number B8 9 = 1 if 8+ 9 ≤ =+1
and B8 9 = 0 otherwise. The vector Dyson equation thus becomes

−1
<:

= I + <1 + . . . + <=+1−: , : = 1, . . . , =. (2.1)

Then d(�) = const. lim[↘0
∑=

:=1 Im<: (� + 8[) In this setting we prove the conjectured result.

Theorem 2.1. In the limit � → 0 we have that d(�) ∼ |� |− =−1
=+1 .

Themain technical result we show is

Proposition 2.2. As I → 0 we have that |<: | ∼ |I |1− 2:
=+1 . In particular |<1 | ∼ |I | =−1

=+1 and |<= | ∼
|I |− =−1

=+1 .

We will proceed by an induction argument on =. The induction argument will proceed by defining

Ĩ = I + <1, and so for this to be a small quantity we first show

Proposition 2.3. In the limit I → 0 we have<1 = >(1).
For this we define the saturated self-energy operator � by �u = |m |(( |m |u), meaning it has entries

�8 9 = |<8 |B8 9 |< 9 |. Then by (a slight modification of) [1, Proposition 7.2.9] we have that ‖�‖ :=
‖�‖ℓ2→ℓ2 < 1. The modification of [1, Proposition 7.2.9] is as follows. Since �2 has strictly positive
entries the Perron-Frobenius theorem for primitive matrices [2, Theorem 8.4.4] gives the existence

of a Perron-Frobenius eigenvector. The remaining proof of [1, Proposition 7.2.9] is the same. Now,

wemay prove the proposition,

Proof of Proposition 2.3. Suppose for contradiction that |<1 | > 2 for some sequence I → 0. Then

2 |<: | ≤ |<1 | |<: | = �1: ≤ ‖�‖ ≤ 1

and so every<: is bounded. Hence by extracting a subsequencewemayassume that all<: converge

as I → 0. Then
−1 = Im + m(m → m(m
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The bound ‖�‖ ≤ 1 survives in the limit and thus

= = |〈1|m(m〉 | =
�����∑
8, 9

<8B8 9< 9

����� ≤ ∑
8, 9

|<8 |B8 9 |< 9 | = 〈1|�1〉 ≤ =

We conclude that m(m = _2 |m |( |m | = _2�1 for some fixed _ ∈ C, |_ | = 1. Thus m = _ |m | and
−1 = m(m = _2�1. Since � only has non-negative entries this gives _2 = −1 and thus using the

first and last equation we get<=<1 = −1 =
∑=

9=1 <1< 9 . Hence,

0 =

=−1∑
9=1

<1< 9 = −
=−1∑
9=1

|<1 | |< 9 |.

Thus |<1 | = 0 at I = 0. Contradiction. We conclude that<1 = >(1). �

Wemay now prove Proposition 2.2.

Proof of Proposition 2.2. Thiswe prove by induction from =−2 to =. Onemay directly check the result

for = = 1, 2. Hence, suppose the result is true for = − 2. Define Ĩ = I + <1. Then by Proposition 2.3

we have Ĩ = >(1) as I → 0. The equations (2.1) now read

−1
<1

= I + <1 + · · · + <= = Ĩ + <2 + . . . + <=

−1
<2

= I + <1 + · · · + <=−1 = Ĩ + <2 + . . . + <=−1

...
...

−1
<=−1

= I + <1 + <2 = Ĩ + <2

−1
<=

= I + <1 = Ĩ

Forgetting the first and last equation we thus have the equations

−1
<2

= Ĩ + <2 + . . . + <=−1

...

−1
<=−1

= Ĩ + <2.

This system of equations is exactly of the same form as equations (2.1), only with = − 2 variables<:

instead, and with small parameter Ĩ instead of I. The induction hypothesis thus gives that |<: | ∼
| Ĩ |1−

2(:−1)
=−1 for all 2 ≤ : ≤ = − 1. This of course also holds for : = =.

We now show that |I | � |<1 | so that | Ĩ | ∼ |<1 |. Hence suppose for contradiction that |<1 | =
$ ( |I |). Considering the first and last equations we have

I<1 + (<1 + . . . + <=)<1 = −1 = I<= + <1<=

Now, |<= | � 1 � |<1 | and so gathering the terms with I and writing only the highest order terms

we get

I<= = <1<=−1(1 + >(1)).
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2 CONSTANT VARIANCE

Thus

|<1 | =
|<= |
|<=−1 |

|I | (1 + >(1)) ∼ | Ĩ | −2
=−1 |I | = >( |I |).

Thus | Ĩ | ∼ |I | and so |<1 | ∼ |I | =+1
=−1 . Then |<1<=−1 | ∼ |I | 4

=−1 and so I<= = <1<=−1(1+>(1)) = >(1).
Similarly<1<= = >(1). Hence the last equation gives−1 = I<= +<1<= = >(1). Contradiction. We

conclude that |I | � |<1 | and so | Ĩ | ∼ |<1 |. Then we have |<: | ∼ |<1 |1−
2(:−1)
=−1 .

Now, combining the first and last equations of (2.1) we get

I<= + <1<= = −1 = I<1 + (<1 + . . . + <=)<1 = <1<= + Θ

(
|<1 |

2
=−1

)
.

Thus we get that I ∼ |<1 |
=+1
=−1 , i.e. |<1 | ∼ |I | =−1

=+1 and so |<: | ∼ |<1 |1−
2(:−1)
=−1 ∼ |I |1− 2:

=+1 for all : . This

finishes the proof. �

Now, we show that Im<: ∼ |<: | so that indeed d has the desired behaviour. First, we have the

formula.

Proposition 2.4. The solution to equations (2.1) satisfies

<: =

(
I + <1

I

) :−1
<1 for all :.

Proof. The equation for<: reads

−1
<:

= I + <1 + . . . + <=+1−:

Thus, combing the equation for<: and<:+1 we get

1
<:+1

− 1
<:

= <=+1−:

Taking reciprocals and using the equation for<=+1−: we thus get

<:<:+1
<:+1 − <:

=
−1

<=+1−:
= I + <1 + . . . + <=+1−(=+1−:) = I + <1 + . . . + <:

Thus we get for 2 ≤ : ≤ = − 1 that

<:+1 =
I + <1 + . . . + <:

I + <1 + . . . + <:−1
<: .

If : = 1we instead get the formula

<2 =
I + <1

I
<1.

Now, a simple induction argument gives the claimed formula. �

Now, we show that the imaginary parts of the <: are of the same order as their norms. Let q: =

<:/|<: | be the phase of<: . Then we claim

Proposition 2.5. As Im I � Re I � 1 then q: = exp
(
:c
=+18

)
+ >(1). In particular Im(<: ) ∼ |<: | ∼

|I |1− 2:
=+1 .
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Proof. The number I has phase I/|I | = 1 + >(1). Proposition 2.4 now gives<: = <:
1I

1−: (1 + >(1))
since |<1 | � |I |. Hence we get for the phases that q: = q:

1 + >(1), in particular q= = q=1 + >(1).
Now, by the equation for<= we have

−1 = I<= + <1<= = <1<= + >(1) = q1q= + >(1) = q=+1
1 + >(1).

We conclude that q1 = exp
(

c
=+18 +

2c;
=+18

)
+ >(1) for some ; = 0, 1, . . . , =. We want to show that

; = 0. For any : we have Im<: > 0. This means that c
=+1 (1 + 2;): ∈ (0, c) + 2cZ for all : , i.e.

(1 + 2;): ∈ (0, = + 1) + 2(= + 1)Z.
Taking : = 1 in this we get 2; + 1 < = + 1, since 2; + 1 < 2(= + 1). Hence ; < =/2. Then taking

: = 2we get 2(2; + 1) < =+ 1, since 2(2; + 1) < 2(=+ 1). Hence ; < =−1
4 . Continuing in this fashion

we conclude that ; < =+1−:
2: for all : = 1, . . . , =. We conclude that ; = 0. This shows the desired. �

Since d is symmetric this gives the desired asymptotic behaviour for d.

3 Variance varies between blocks

We now consider the case where the variance is allowed to vary between the blocks, but stays con-

stant inside each block. That is, the variances are given by thematrix

( =



B11 B12 · · · B1(=−1) B1=
B21 B22 · · · B2(=−1) 0
...

...
. . .

...
...

B(=−1)1 B(=−1)2 · · · 0 0
B=1 0 · · · 0 0


,

where each B8 9 has all the same entries (which might differ for different 8, 9). Again, we may treat

both each B8 9 ∈ R#×# and each m: ∈ H# as numbers B8 9 ∈ R and <: ∈ H. Note that as there are
only finitelymany B8 9 (independent of #) we have 2 < B8 9 < � if 8 + 9 − 1 ≤ = and B8 9 = 0 otherwise.

The vector Dyson equation is then again

−1
m = I + (m i.e.

−1
<:

= I +
=+1−:∑
9=1

B: 9< 9 , : = 1, . . . , =,

where I ∈ H andm ∈ H=. We prove that, in this case Conjecture 1.1 holds.

Theorem 3.1. In the limit � → 0 we have that d(�) ∼ |� |− =−1
=+1 .

We discuss how the argument above generalises, where it breaks down and how to fix it.

Most of the proof works equally well in this case. The only problem is the induction step. The

construction Ĩ = I + <1 is not the correct one tomake: The equations are

−1
<:

= I + B:1<1 + . . . + B: (=+1−:)<=+1−: , : = 1, . . . , =.

Thus, in order to absorb the <1-terms into the small parameter I we would need to define Ĩ = I +
(B11<1, . . . , B=1<1). This is however not a number, so something needs to be done for the induction

argument to work. Wewill do as follows.

Treat instead z = (I1, . . . , I=) ∈ H= as a vector instead of the number I ∈ H and consider the

equations
−1
<:

= I: + B:1<1 + . . . + B: (=+1−:)<=+1−: , : = 1, . . . , =.
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3 VARIANCE VARIES BETWEEN BLOCKS

We are really interested in the case z = (I, I, . . . , I) ∈ H=, since this corresponds to the original

equations. Hence a natural condition to require on z is that all components are of the same order,

|I 9 | ∼ |I: | for all 9 , : . We will denote this order by |I |, i.e. |I: | ∼ |I | for all : . Proposition 2.3 works

equally well in this case, where z is a vector. The proof is the same. In fact, for this result, we don’t

need to impose the condition that all components of z have similar size.

Proposition 3.2. In the limit z → 0 we have<1 = >(1).
For the induction argument Proposition 2.2 we have mostly the same proof, only we need to check

that z̃ = z+ (B11<1, . . . , B=1<1) has similar size components in order for the induction step towork.

Proposition 3.3. Let z ∈ H= with |I: | ∼ |I | for all : . As z → 0 we have that |<: | ∼ |I |1− 2:
=+1 . In

particular |<1 | ∼ |I | =−1
=+1 and |<= | ∼ |I |− =−1

=+1 .

Proof. The proof is mostly the same as above, i.e. by induction on =. For the induction to work how-

ever, we need to check that the small parameter z̃ = z + (B11<1, . . . , B=1<1) has similar size com-

ponents. Hence suppose not. Then I: and B:1<1 must have almost opposite phases for some : . As

Im z > 0 and Im<1 > 0, this implies, that
Im<1
|<1 | vanishes. Then the first equation gives us

Im<1
|<1 |

= [1 |<1 | + |<1 |B11 Im<1 + . . . + |<1 |B1= Im<= ≥ �1=
Im<=

|<= |

and so
Im<=

|<= | also vanishes. Nowwe show that I=<= vanishes.

The last equation gives
Im<=

|<= |
= [= |<= | + �=1

Im<1
|<1 |

and thus [= |<= | vanishes. If �= = $ ([=) then I=<= vanishes, and so we may assume that [= =

>(�=). Also, by the symmetry of the equations z → −z,m → −m it suffices to consider �= > 0.
Now, the equation for<= reads −1 = I=<= + <=B=1<1 and so |1 + I=<= | = |<=B=1<1 | = �=1 ≤ 1.
Hence I=<= ∈ �(−1, 1), the ball of radius 1 centered at−1. In particular Im(I=<=) < 0. So

0 >
Im(I=<=)

|<= |
= �=

Im<=

|<= |
+ [=

Re<=

|<= |
.

Since �=, [=, Im<= > 0we conclude thatRe<= < 0 and thus

Re<=

|<= |
= −1 + >(1).

We conclude that
Im<=

|<= | = $

(
[=
�=

)
. Let arg denote the argument function taking values in (0, 2c).

Then

arg(I=<=) = arg(I=) + arg(<=) =
(
$

(
[=

�=

) )
+
(
c −$

(
Im<=

|<= |

) )
= c +$

(
[=

�=

)
.

Since I=<= ∈ �(−1, 1) we thus conclude that |I=<= | = >(1). Now we show that |<1<= | > 2 as

z → 0.
Rearranging the equations for the real values we haveE|m | = (1 + �)Re m

|m | . Thus

>(1) = �= |<= | =
〈
4=

����(1 + �)Re m
|m |

〉
= −Re<=

|<= |
− �=1

Re<1
|<1 |

.

Thus �=1 → 1. In particular |<1 | |<= | > 1
2B=1

= 2 for z small enough. Thus |I= | |<= | � 1 ∼ |<1 | |<= |
and so |I | ∼ |I= | � |<1 |. Then | Ĩ: | = |I: + B:1<1 | ∼ |<1 | all have the same order. Contradiction.

We conclude that all components of z̃ have the same order.

The remaining parts of the proof is exactly the same as in the proof of Proposition 2.2. �
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Wemayagainnow just consider I ∈ H anumber, since theonly reasonweneeded to consider z ∈ H=

was the technical argument in Proposition 3.3 above. The formula Proposition 2.4 is also not true in

general, but it is true approximately.

Proposition 3.4. As I → 0 then<: = 2: I
1−:<:

1 (1 + >(1)) for some (explicit) constants 2: > 0.
The proof of Proposition 3.4 is similar to the proof of Proposition 2.4 only we need to take care of the

error terms since we in general don’t havemuch cancellation of the terms.

Proof. Define _ = |I |2/(=+1) . Then, expanding to second order we have

1
<:+1

− 1
<:

= B: (=+1−:)<=+1−:

(
1 +

B: (=−:) − B(:+1)(=−:)
B: (=+1−:)

<=−:
<=+1−:

+$ (_2)
)

Taking the reciprocal and using the equation for<=+1−: we thus get

<:+1<:

<:+1 − <:

= <: +
B(=+1−:) (:−1)
B(=+1−:):

<:−1 +
B(:+1) (=−:) − B: (=−:)

B: (=+1−:)

<:<=−:
<=+1−:

+$ ( |<: |_2).

Thus

−<2
: +

B(=+1−:) (:−1)
B(=+1−:):

<:+1<:−1 +
B(:+1) (=−:) − B: (=−:)

B: (=+1−:)

<:<:+1<=−:
<=+1−:

= $ ( |<: |2_).

Now we use that <: B: (=+1−:)<=+1−: = −1 + $ (_), which follows from the equation for <: . With

this we get

−1 +
B(=+1−:) (:−1)
B(=+1−:):

<:+1<:−1

<2
:

+
(
1 −

B: (=−:)
B(:+1) (=−:)

)
= $ (_)

Hence<:+1 = 2̃:+1<
2
:
<−1

:−1(1 +$ (_)) for 2̃:+1 =
B (=+1−:): B: (=−:)

B (=+1−:) (:−1) B (:+1) (=−:)
> 0.

For the case where : = 1 everything is the same only with$ (_) replaced by >(1) and <0 = I.

Thus, by induction we conclude the desired formula. �

With this Proposition 2.5 carries over immediately, i.e.

Proposition 3.5. As Im I � Re I � 1 then q: = exp
(
:c
=+18

)
+ >(1). In particular Im(<: ) ∼ |<: | ∼

|I |1− 2:
=+1 .

This shows the desired on d.
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