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Abstract

This document combines derivations and explanations of current proofs of an upper bound
for the spin-wave spectrum of antiferromagnets in quantum Heisenberg moidel. The connec-
tion between antiferromagnets and lattice gases consisting of hard-core bosons is discussed in
motivation section.

1 Motivation

One can consider a gas of hard-core bosons in a crystal lattice. Term hard-core here refers to the
fact that two or more of these particles cannot occupy the same lattice site. Thus said, each lattice
site can be either occupied by a single boson or remain empty. The ground state energy spectrum
is given by:

ε0(q) = inf spec H∣p=q, (1)

where H is the Hamiltonian of the system, p is some conserved parameter, which in this case is
represented by the momentum q. Thus said, the ground state energy is the infimum of system
energies of states with fixed momentum q. One can obtain an upper bound for (1) by using so-
called Bijl-Feynman ansatz (single mode approximation). This upper bound can be written down
in a form:

ε0(q) ≲
∣q∣2

S(q)
, (2)

where S(q)∝ ∣q∣ is called a structure factor.
One may notice the similarity between the bosonic problem and a spin- 1

2
quantum Heisenberg

model for antiferromagnets, for which the upper bound was proved by several papers, including
[1] and better, as claimed, [2] and [3]. The idea of mapping problems to one another is relatively
simple: the existence of the particle in the lattice site i refers to the value of spin Si = +

1
2
, whereas

the empty site refers to Si = −
1
2

value of spin. More accurately, Ŝ+ and Ŝ− operators are linked
with bosonic creation and annihilation operators respectively. If one considers the anisotropy
parameter ∆ = 0 in quantum Heisenberg model, the Hamiltonian has the following representation
(only nearest neighbor interaction is taken into account):

Ĥ = ∑
i,j∶∣ri−rj ∣=1

(Ŝ(i)x Ŝ(j)x + Ŝ(i)y Ŝ(j)y ), (3)

which can be rewritten in terms of Ŝ+ and Ŝ− operators and then mapped to the following bosonic
Hamiltonian:

ĤB = ∑
i,j∶∣ri−rj ∣=1

(â�i âj + â
�
j âi). (4)

1



One may notice, that terms in Hamiltonian (4) refer to the movement of boson between lattice
sites i and j. If one considers also the Ŝz term, by making ∆ ≠ 0, in the relation for antiferromag-
net Hamiltonian (3), the corresponding bosonic term will refer to the nearest-neighbor interaction
between bosons.
To sum up: in case if one understands the proof of an upper bound for the spin-wave energy spec-
trum for the antiferromagnetic Heisenberg model, the same type of upper bound may be claimed
for the ground state energy of interacting hard-core bosons in a lattice.

2 Uncertainty principle for non-Hermitian operators

The results presented in this section were originally obtained by Lev Pitaevskii and Sandro Stringari
in [4]. Main goal of this section is to present the inequality yielding, at low temperature, relevant
information on the fluctuations of physical quantities. The resulting inequality can be applied
both to Hermitian and non-Hermitian operators and can be consequently regarded as a natural
generalization of the Heisenberg uncertainty principle. Its determination is based on the use of
the Cauchy-Schwarz inequality for auxiliary operators related to the physical operators through a
linear transformation. The inequality is later used in Section 3 to calculate the upper bound for
spin-wave structure factor.

2.1 Zero-temperature limit

Let us define a scalar product between the two operators A and B as:

(A,B) = ⟨{A�,B}⟩ , (5)

where {A�,B} = A�B +BA� and ⟨...⟩ means the statistical average. This definition satisfies all the
requirements for a scalar product, thus the Cauchy-Schwarz inequality can be used:

∣(u, v)∣2 ≤ (u,u) ⋅ (v, v)Ô⇒ ⟨{A�,A}⟩ ⋅ ⟨{B�,B}⟩ ≥ ∣ ⟨{A�,B}⟩ ∣
2

. (6)

One can show that this inequality holds even if the anticommutator is replaced by q-commutator:

[A�,B]q = A
�B + qBA�; ∣q∣ ≤ 1. (7)

One can first prove the statement (6) for the ordinary commutator in the simplest case, where the
average is taken on the ground state of the system (zero-temperature limit). Given the physical
operator C, one can define an auxiliary operator C̃ satisfying the following properties:

⟨n∣ C̃ ∣0⟩ = ⟨n∣C ∣0⟩ and ⟨0∣ C̃ ∣n⟩ = − ⟨0∣C ∣n⟩ , (8)

and hence:
⟨n∣ C̃�

∣0⟩ = − ⟨n∣C�
∣0⟩ and ⟨0∣ C̃�

∣n⟩ = ⟨0∣C�
∣n⟩ , (9)

where states ∣n⟩ form a complete set of states of the system and operators satisfy the condition
⟨0∣C ∣0⟩ = ⟨0∣ C̃ ∣0⟩ = 0. One can now write down explicitly the average of an anticommutator
{A�,B} in the form:

⟨0∣ {A�,B} ∣0⟩ =∑
n

( ⟨0∣A�
∣n⟩ ⟨n∣B ∣0⟩ + ⟨0∣B ∣n⟩ ⟨n∣A�

∣0⟩ ) (10)

and straightforwardly check the following identities:

⟨0∣ {A�, B̃} ∣0⟩ = ⟨0∣ [A�,B] ∣0⟩ and ⟨0∣ [B̃�, B̃] ∣0⟩ = ⟨0∣ {B�,B} ∣0⟩ , (11)

but due to the Cauchy-Schwarz inequality:

⟨{A�,A}⟩ ⟨{B�,B}⟩ = ⟨{A�,A}⟩ ⟨{B̃�, B̃}⟩ ≥ ∣{A�, B̃}∣
2

= ∣ ⟨[A�,B]⟩ ∣
2

. (12)
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2.2 Finite temperatures

One can consider a system at a temperature different than zero in statistical equilibrium. In this
case, the definition of the auxiliary operator C̃ should be generalized the following way:

⟨n∣ C̃ ∣m⟩ =
ρm − ρn
ρm + ρn

⟨n∣C ∣m⟩ , (13)

where ρn = Z−1 exp(−βEn) is the statistical weight relative to the state ∣n⟩, En is the eigenvalue
of the grand canonical Hamiltonian H − µN and Z = ∑n exp(−βEn) is the partition function.
By writing the statistical average of the anticommutator {A�,B} in the form:

⟨{A�,B}⟩ = ⟨A�B +BA�⟩ = Z−1
∑
m

exp(−βEm) ⟨m∣A�B ∣m⟩+

+Z−1
∑
n

exp(−βEn) ⟨n∣BA
�
∣n⟩ = Z−1

∑
m,n

(exp(−βEm) + exp(−βEn)) ⟨m∣A�
∣n⟩ ⟨n∣B ∣m⟩ . (14)

One straightforwardly finds the following identities:

⟨{A�, B̃}⟩ = Z−1
∑
m,n

(exp(−βEm) + exp(−βEn)) ⟨m∣A�
∣n⟩ ⟨n∣ B̃ ∣m⟩ =

= Z−1
∑
m,n

(exp(−βEm) + exp(−βEn)) ⟨m∣A�
∣n⟩

ρm − ρn
ρm + ρn

⟨n∣B ∣m⟩ =

= Z−1
∑
m,n

(exp(−βEm) − exp(−βEn)) ⟨m∣A�
∣n⟩ ⟨n∣ B̃ ∣m⟩ = ⟨[A�,B]⟩ , (15)

⟨{B̃�, B̃}⟩ = Z−1
∑
m,n

(exp(−βEm) + exp(−βEn)) ⟨m∣ B̃�
∣n⟩ ⟨n∣ B̃ ∣m⟩ =

= Z−1
∑
m,n

(exp(−βEm) + exp(−βEn))
ρm − ρn
ρm + ρn

⟨m∣B�
∣n⟩

ρm − ρn
ρm + ρn

⟨n∣B ∣m⟩ =

= Z−1
∑
m,n

(ρm − ρn)
2

ρm + ρn
⟨m∣B�

∣n⟩ ⟨n∣B ∣m⟩ . (16)

Given the fact that:

∫ tanh(βω/2)δ(ω −En +Em)dω = tanh(
β

2
(En −Em)) =

=
exp(β

2
(En −Em)) − exp(−β

2
(En −Em))

exp(β
2
(En +Em)) − exp(−β

2
(En −Em))

=
ρm − ρn
ρm + ρn

, (17)

one finally obtains:

⟨{B̃�, B̃}⟩ = ∫ Z−1
∑
m,n

(ρm − ρn) ⟨m∣B�
∣n⟩ ⟨n∣B ∣m⟩ tanh(βω/2)δ(ω −En +Em)dω =

= ∫ dωAB�,B(ω) tanh(βω/2), (18)

where:

AA�,B(ω) = Z−1
∑
m,n

(exp(−βEm) − exp(−βEn)) ⟨m∣A�
∣n⟩ ⟨n∣B ∣m⟩ δ(ω −En +Em). (19)

One can now prove the following identities:

⟨{A�,A}⟩ = Z−1
∑
m,n

(exp(−βEm) + exp(−βEn)) ⟨m∣A�
∣n⟩ ⟨n∣A ∣m⟩ = ∫ dωAA�,A(ω) coth(βω/2),

(20)
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⟨{B̃�, B̃}⟩ = Z−1
∑
m,n

(exp(−βEm) + exp(−βEn)) ⟨m∣ B̃�
∣n⟩ ⟨n∣ B̃ ∣m⟩ = ∫ dωAB�,B(ω) tanh(βω/2),

(21)

⟨{A�, B̃}⟩ = ∑
m,n

(ρm + ρn) ⟨m∣A�
∣n⟩ ⟨n∣ B̃ ∣m⟩ = ∑

m,n

(ρm − ρn) ⟨m∣A�
∣n⟩ ⟨n∣B ∣m⟩ = ∫ dωAA�,B(ω).

(22)
Applying the Cauchy-Schwarz inequality to ⟨{A�,B}⟩, which defines the scalar product as it was
mentioned before, one can obtain general non-trivial result:

⟨{A�,A}⟩ ⋅ ⟨{B̃�, B̃}⟩ ≥ ∣ ⟨{A�, B̃}⟩ ∣
2

, (23)

∫ dωAA�,A(ω) coth(βω/2) ⋅ ∫ dωAB�,B(ω) tanh(βω/2) ≥ ∣∫ dωAA�,B(ω)∣

2

. (24)

The result for zero temperature (12) might be obtained directly by implying:

lim
β→∞

coth(βω/2) = lim
β→∞

tanh(βω/2) = 1. (25)

Using (24) one may obtain the Bogoliubov inequality as well. See Appendix A for details.

3 Lower bound for correlation function (structure factor)

The results presented in this section were originally obtained by B. Sriram Shastry in [7]. The goal
of this section is to provide a lower bound for the structure factor (or correlation function) of the
Heisenberg antiferromagnet.
The spectral function depending on two (non-Hermitian in general) operators a and b with Z being
the partition function can be defined the following way:

ρa,b(ω) =
1

Z
(1 + exp(−βω))∑

µ,ν

exp(−βεν) ⟨ν∣a ∣µ⟩ ⟨µ∣ b ∣ν⟩ δ(εµ − εν − ω). (26)

Note: this spectral function is related to spectral function (19) through:

ρa,b(ω) tanh(βω/2) = Aa,b(ω).

It can be easily proved that:

ρa�,a(ω) =
1

Z
(1 + exp(−βω))∑

µ,ν

exp(−βεν) ⟨ν∣a
�
∣µ⟩ ⟨µ∣a ∣ν⟩ δ(εµ − εν − ω) =

=
1

Z
(1 + exp(−βω))∑

µ,ν

exp(−βεν)∣ ⟨µ∣a ∣ν⟩ ∣
2
δ(εµ − εν − ω) ≥ 0, (27)

which is the most fundamental property of the spectral function and also:

ρa,b(−ω) = ρb,a(ω) = ρ
∗
a�,b�(ω), (28)

ρa+b,c(ω) = ρa,c(ω) + ρb,c(ω), (29)

ραa,b(ω) = αρa,b(ω), where α - constant. (30)

The above properties prove that the spectral function may be used to define a scalar product,
which satisfies the Cauchy-Schwarz inequality:

a� ⋅ b ≡ ∫ dωfa�(ω)fb(ω)ρa�,b(ω), (31)
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∣∫ dωfa�(ω)fb(ω)ρa�,b(ω)∣

2

≤ ∫ dω∣fa�(ω)∣
2
ρa�,a(ω)∫ dω∣fb(ω)∣

2
ρb�,b(ω). (32)

Various choices of filter functions f generate the different inequalities:

1. Bogoliubov inequality: fa�(ω) = fb(ω) =
√

tanh(βω/2) gives a large weight to frequencies
less than kBT and suppresses higher frequencies.

2. Pitaevskii and Stringari inequality: fa�(ω) = tanh(βω/2); fb(ω) = 1 favors the opposite
regime for one of the operators.

Note: the original paper [7] has a mistake in the transition to Pitaevskii and Stringari inequality.
One can calculate the results of convolution with the following frequently needed filter functions:

⟨f(ω)⟩a,b = ∫ dωf(ω)ρa,b(ω), (33)

⟨1⟩a,b = ⟨{a, b}⟩ , ⟨tanh(βω/2)⟩a,b = ⟨[a, b]⟩ ,

⟨ω tanh(βω/2)⟩a,b = ⟨[[a,H], b]⟩ , ⟨ω−1 tanh(βω/2)⟩
a,b

= β(a, b),
(34)

where the Duhamel two-point function is defined as:

(a, b) = (kBT )
1

Z
∑
µ,ν

(exp(−βεν) − exp(−βεµ))

(εµ − εν)
⟨ν∣a ∣µ⟩ ⟨µ∣ b ∣ν⟩ , (35)

and ⟨A⟩ stands for the thermal average.
With fa�(ω) = tanh(βω/2) and fb(ω) = 1 from the Cauchy-Schwarz inequality one can write down
the following:

∣∫ dω tanh(βω/2)ρa�,b(ω)∣

2

≤ ∫ dω∣ tanh(βω/2)∣
2
ρa�,a(ω)∫ dωρb�,b(ω), (36)

∣ ⟨[a�, b]⟩ ∣
2
≤ ⟨{b�, b}⟩ ⟨( tanh(βω/2))

2
⟩
a�,a

. (37)

One can now bound the second term in the r.h.s. of (37):

+∞

∫
−∞

dω( tanh(βω/2))
2
ρa�,a(ω) =

+∞

∫
0

dω( tanh(βω/2))
2
(ρa�,a(ω) + ρa,a�(ω)), (38)

by using the concavity of tanh(x) in [0,+∞) and Jensen’s inequality for a concave function ϕ:

ϕ
⎛

⎝

∑i aixi

∑i ai

⎞

⎠
≥
∑i aiϕ(xi)

∑i ai
, (39)

together with the notations:

∑
i

ai ≡ ⟨∣ tanh(βω/2)∣⟩
a�,a

=

+∞

∫
0

dω∣ tanh(βω/2)∣ρa�,a(ω), (40)

ϕ(xi) ≡ tanh(βω/2). (41)

The resulting bound is given by:

1

Φ

+∞

∫
0

dω∣ tanh(βω/2)∣ tanh(βω/2)ρa�,a(ω) ≤ tanh
⎛

⎝

1

Φ

+∞

∫
0

dω∣ tanh(βω/2)∣
βω

2
ρa�,a(ω)

⎞

⎠
, (42)
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⟨( tanh(βω/2))
2
⟩
a�,a

≤ Φ tanh(β
⟨ω tanh(βω/2)⟩a�,a

2Φ
), (43)

where:
Φ = ⟨∣ tanh(βω/2)∣⟩

a�,a
. (44)

The Cauchy-Schwarz inequality gives:

0 ≤ Φ =

+∞

∫
−∞

dω∣ tanh(βω/2)∣ρa�,a(ω) ≤
√

⟨ω tanh(βω/2)⟩a�,a ⟨ω
−1 tanh(βω/2)⟩a�,a. (45)

Given the fact that tanh(x)
x

is monotonically decreasing in the interval [0,+∞), one can maximize
the r.h.s of (43) with the bound given by (45):

⟨( tanh(βω/2))
2
⟩
a�,a

≤
√

⟨[[a�,H], a]⟩a�,a β(a
�, a) tanh

⎛
⎜
⎝

β

2

¿
Á
ÁÀ⟨[[a�,H], a]⟩a�,a

β(a�, a)

⎞
⎟
⎠
. (46)

Inserting (46) into previously obtained (37):

∣ ⟨[a�, b]⟩ ∣
2
≤ ⟨{b�, b}⟩

√
⟨[[a�,H], a]⟩a�,a β(a

�, a) tanh
⎛
⎜
⎝

β

2

¿
Á
ÁÀ⟨[[a�,H], a]⟩a�,a

β(a�, a)

⎞
⎟
⎠
, (47)

and finally:

⟨{b�, b}⟩ ≥
∣ ⟨[a�, b]⟩ ∣

2

√
⟨[[a�,H], a]⟩a�,a β(a

�, a)
coth

⎛
⎜
⎝

β

2

¿
Á
ÁÀ⟨[[a�,H], a]⟩a�,a

β(a�, a)

⎞
⎟
⎠
. (48)

One can apply this general inequality to the Heisenberg antiferromagnet on a hypercubic lattice
in d dimensions. Let ∣Λ∣ stand for the number of sites in the lattice and Λ∗ for the dual lattice.
One denotes the structure factor gαq = ⟨Sαq S

α
−q⟩ using the Fourier transform:

Sαq =
1

√
∣Λ∣
∑
r∈Λ

Sαr exp(−iq ⋅ r). (49)

Note: the original paper [7] has r ∈ Λ∗, which seems confusing as sites coordinates should be
elements of the real lattice, not the dual one.
One can choose Q = (π, ..., π), a = Syq and b = Szq+Q, then:

[a�, b] =
1

Λ

⎡
⎢
⎢
⎢
⎢
⎣

∑
r∈Λ

Syr exp(iq ⋅ r), ∑
r′∈Λ

Szr′ exp(−i(q +Q) ⋅ r′)

⎤
⎥
⎥
⎥
⎥
⎦

= i(
√

∣Λ∣)
−1

SxQ. (50)

If one assumes that long ranged order (LRO) exists along the x-axis, then ⟨SxQ⟩ =
√

∣Λ∣M0, where

M0 is the staggered magnetization, thus ∣ ⟨[a�, b]⟩ ∣ = M0. The double commutator is readily
evaluated using the translation and rotation invariance as:

⟨[[Sy−q,H], Syq]⟩ = 2cyE
−
q , (51)

where cy = − ∑
β≠y

⟨Sβ0 S
β
δ ⟩ with δ - the nearest neighbor and E±

q =
d

∑
i=0

(1 ± cos(qi)).

Thus, the correlation function can be bounded from below under the assumption of LRO. One can
define the function:

G(q) ≡

¿
Á
ÁÀ

E−
q

4E+
q

coth(β
√
cyE+

qE
−
q). (52)
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The lower bound for the correlation function gzq can now be found by substituting Q, a and b in
(48), shifting q =Q + q′ and using the fact that E±

q+Q = E∓
q :

⟨{Sz−q−Q, S
z
q+Q}⟩ ≥

RRRRRRRRRRR

⟨i(
√

∣Λ∣)
−1

SxQ⟩

RRRRRRRRRRR

2

√
⟨[[Sy−q,H], Syq]⟩β(S

y
−q, S

y
q)

coth
⎛
⎜
⎝

β

2

¿
Á
ÁÀ⟨[[Sy−q,H], Syq]⟩

β(Sy−q, S
y
q)

⎞
⎟
⎠
, (53)

⟨{Sz−q−Q, S
z
q+Q}⟩ ≥

m2
0

√
2cyE−

qβ
1

2βE+
q

coth
⎛
⎜
⎝

β

2

¿
Á
Á
ÁÀ

2cyE−
q

β 1
2βE+

q

⎞
⎟
⎠
, (54)

⟨{Sz−q−Q, S
z
q+Q}⟩ ≥m2

0

¿
Á
ÁÀ

E+
q

cyE−
q

coth(β
√
cyE−

qE
+
q), (55)

⟨{Sz−q′ , S
z
q′}⟩ ≥m

2
0

¿
Á
ÁÀ

E−
q′

cyE+
q′

coth(β
√
cyE+

q′E
−
q′), (56)

gzq ≥m
2
0G(q)/

√
cy. (57)

Inequality (57) is used in Section 4 and is extended for the case of anisotropic model. One may
notice that in transition from (53) to (54) and upper bound for the Duhamel two-point function
is used. This bound is proved in Appendix B.

4 An upper bound for spectrum

The results presented in this section were originally derived by Tsuomu Momoi in [1]. This section
proves an upper bound for the spin-wave spectrum in quantum Heisenberg model for antiferro-
magnets.
In quantum Heisenberg model for an XXZ antiferromagnet on the d-dimensional L × ... × L hy-
percubic lattice Λ ⊂ Zd (d ≥ 2) the Hamiltonian is defined by:

HΛ = J ∑
⟨i,j⟩∈Λ

(Sxi S
x
j + S

y
i S

y
j +∆Szi S

z
j ), (58)

where 0 ≤ ∆ ≤ 1 and the summation runs over the nearest neighbor sites. The system size of Λ is
N = Ld. One can consider the system under the small staggered magnetic field. The Hamiltonian
of such a system:

HΛ(B) =HΛ −BMΛ, (59)

where:
MΛ = ∑

i∈A

Sxi −∑
i∈B

Sxi . (60)

Note: A and B - respectively, sets of spins directing up and down (sublattices).
One can now consider ∣ΦGS,B⟩ to be a ground state of the Hamiltonian (59). The staggered
magnetization in a thermodynamic limit under infinitesimally small field B is given by:

ms = lim
B↘0

lim
Λ↗∞

1

N
⟨ΦGS,B ∣MΛ ∣ΦGS,B⟩ . (61)

As the excited state, the following one is considered (this excitation is called magnon):

∣ψB(k)⟩ =
Szk ∣ΦGS,B⟩

∣∣Szk ∣ΦGS,B⟩ ∣∣
, (62)
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where:

Szk =
1

√
N
∑
i

Szi exp(−ik ⋅ ri), k = (k1, ..., kd), (63)

∣∣Szk ∣ΦGS,B⟩ ∣∣ =

√

⟨ΦGS,B ∣Sz
−kS

z
k ∣ΦGS,B⟩. (64)

When the spins lie in the XY -plane, the operation of Szi flips the spin in the site i. The excitation
energy of ∣ψB(k)⟩ is given by:

ε(k) = lim
B↘0

lim
Λ↗∞

[ ⟨ψB(k)∣HΛ(B) ∣ψB(k⟩ − ⟨ΦGS,B ∣HΛ(B) ∣ΦGS,B⟩ ]. (65)

Note: shorter version of derivations, explicitly implying β →∞ is available in Appendix C.
One can choose the momentum k as k ≠ 0,k = (π, ..., π) and km = 2π

L
lm, lm ∈ [0, L−1], thus making

the states ∣ΦGS,B⟩ and ∣ψB(k)⟩ orthogonal as eigenstates of the transverse momentum operator
with different eigenvalues. This trial state is called in the literature the Bijl-Feynman single mode
approximation.

Theorem If the ground state has a Neél order, i.e., if ms > 0, the energy spectrum ε(k) is bounded
as:

ε(k) ≤
2dJ(ρx + ρy)

m2
s

√
ρx(1 +∆γk) + ρz(∆ + γk)

√
1 − γk, (66)

where:

ρα = − lim
B↘0

lim
Λ↗∞

1

Nd
⟨ΦGS,B ∣ ∑

⟨i,j⟩∈Λ

Sαi S
α
j ∣ΦGS,B⟩ , α = {x, y, z}, (67)

and:

γk =
1

d

d

∑
i=1

cos(ki). (68)

◻ The excitation energy of ∣ψB(k)⟩ is given by:

⟨ψB(k)∣HΛ(B) ∣ψB(k)⟩ − ⟨ΦGS,B ∣HΛ(B) ∣ΦGS,B⟩ =

=
⟨ΦGS,B ∣Sz−kHΛ(B)Szk ∣ΦGS,B⟩

∣∣Szk ∣ΦGS,B⟩ ∣∣
2

− ⟨ΦGS,B ∣HΛ(B) ∣ΦGS,B⟩ =

=
⟨ΦGS,B ∣Sz−kHΛ(B)Szk ∣ΦGS,B⟩ − ⟨ΦGS,B ∣HΛ(B) ∣ΦGS,B⟩ ⟨ΦGS,B ∣Sz−kS

z
k ∣ΦGS,B⟩

⟨ΦGS,B ∣Sz
−kS

z
k ∣ΦGS,B⟩

. (69)

The states ∣±⟩ = Sz±k ∣ΦGS,B⟩ has the same energy ⟨±∣HΛ(B) ∣±⟩ as Hamiltonian remains constant
during the coordinate inversion, but the states transform to one another. Thus said:

[[Sz−k,HΛ(B)], Szk] = [Sz−kHΛ(B) −HΛ(B)Sz−k, S
z
k] =

= Sz−kHΛ(B)Szk −HΛ(B)Sz−kS
z
k − S

z
kS

z
−kHΛ(B) + SzkHΛ(B)Sz−k, (70)

⟨ΦGS,B ∣ [[Sz−k,HΛ(B)], Szk] ∣ΦGS,B⟩ =

= 2( ⟨ΦGS,B ∣Sz−kHΛ(B)Szk ∣ΦGS,B⟩ − ⟨ΦGS,B ∣ ⟨ΦGS,B ∣HΛ(B) ∣ΦGS,B⟩Sz−kS
z
k ∣ΦGS,B⟩ ). (71)

The excitation energy now has the following representation:

⟨ψB(k)∣HΛ(B) ∣ψB(k)⟩ − ⟨ΦGS,B ∣HΛ(B) ∣ΦGS,B⟩ =
⟨ΦGS,B ∣ [[Sz−k,HΛ(B)], Szk] ∣ΦGS,B⟩

⟨ΦGS,B ∣Sz
−kS

z
k ∣ΦGS,B⟩

. (72)
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One can explicitly insert (58) with ∆ = 1 (isotropic model) into (72) and evaluate the commutators
step-by step:

[[Szµ, S
x
i ], S

z
ν ] = iδiµ[S

y
i , S

z
ν ] = −δiµδiνS

x
i , (73)

⟨ΦGS,B ∣
1

N

⎡
⎢
⎢
⎢
⎢
⎣

[∑
µ

Szµ exp(−ik ⋅ rµ),−B(∑
i∈A

Sxi −∑
i∈B

Sxi )],∑
ν

Szν exp(ik ⋅ rν)

⎤
⎥
⎥
⎥
⎥
⎦

∣ΦGS,B⟩ =

=
B

N
⟨ΦGS,B ∣MΛ ∣ΦGS,B⟩ , (74)

[[Szµ, S
z
i S

z
j ], S

z
ν ] = 0, (75)

⟨ΦGS,B ∣
1

N

⎡
⎢
⎢
⎢
⎢
⎣

[∑
µ

Szµ exp(−ik ⋅ rµ), J ∑
⟨i,j⟩∈Λ

∆Szi S
z
j ],∑

ν

Szν exp(ik ⋅ rν)

⎤
⎥
⎥
⎥
⎥
⎦

∣ΦGS,B⟩ = 0, (76)

[Szµ, S
x
i S

x
j ] = S

z
µS

x
i S

x
j − S

x
i S

x
j S

z
µ = (Sxi S

z
µ + iδiµS

y
i )S

x
j − S

x
i (S

z
µS

x
j − iδjµS

y
j ) =

= iδiµS
y
i S

x
j + iδjµS

x
i S

y
j , (77)

[Syi S
x
j , S

z
ν ] = S

y
i S

x
j S

z
ν − S

z
νS

y
i S

x
j = S

y
i (S

z
νS

x
j − iδjνS

y
j ) − (Syi S

z
ν − iδiνS

x
i )S

x
j =

= −iδjνS
y
i S

y
j + iδiνS

x
i S

x
j , (78)

[Sxi S
y
j , S

z
ν ] = S

x
i S

y
j S

z
ν − S

z
νS

x
i S

y
j = S

x
i (S

z
νS

y
j + iδjνS

x
j ) − (Sxi S

z
ν + iδiνS

y
i )S

y
j =

= iδjνS
x
i S

x
j − iδiνS

y
i S

y
j , (79)

[[Szµ, S
x
i S

x
j ], S

z
ν ] = iδiµ(−iδjνS

y
i S

y
j + iδiνS

x
i S

x
j ) + iδjµ(iδjνS

x
i S

x
j − iδiνS

y
i S

y
j ) =

= Sxi S
x
j (−δiµδiν − δjµδjν) + S

y
i S

y
j (δiµδjν + δjµδiν), (80)

exp(−ik ⋅ rµ)[[S
z
µ, S

x
i S

x
j ], S

z
ν ] exp(ik ⋅ rν) = −2Sxi S

x
j + 2Syi S

y
j cos(k ⋅ (rν − rµ)), (81)

⟨ΦGS,B ∣
1

N

⎡
⎢
⎢
⎢
⎢
⎣

[∑
µ

Szµ exp(−ik ⋅ rµ), J ∑
⟨i,j⟩∈Λ

Sxi S
x
j ],∑

ν

Szν exp(ik ⋅ rν)

⎤
⎥
⎥
⎥
⎥
⎦

∣ΦGS,B⟩ =

= −2
J

N
⟨ΦGS,B ∣ ∑

⟨i,j⟩∈Λ

Sxi S
x
j ∣ΦGS,B⟩ + 2

J

N
γk ⟨ΦGS,B ∣ ∑

⟨i,j⟩∈Λ

Syi S
y
j ∣ΦGS,B⟩ . (82)

After calculating the commutators, (72) transforms to:

⟨ψB(k)∣HΛ(B) ∣ψB(k)⟩ − ⟨ΦGS,B ∣HΛ(B) ∣ΦGS,B⟩ =

=

2J(1 − γk) ⟨ΦGS,B ∣ − ∑
⟨i,j⟩∈Λ

(Sxi S
x
j + S

y
i S

y
j ) ∣ΦGS,B⟩ +B ⟨ΦGS,B ∣MΛ ∣ΦGS,B⟩

2N ⟨ΦGS,B ∣Sz
−kS

z
k ∣ΦGS,B⟩

. (83)

For the excitation energy in the thermodynamic limit:

lim
B↘0

lim
Λ↗∞

ε(k) =
2Jd(ρx + ρy)(1 − γk)

2Sz�(k)
, (84)
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where Sz�(k) denotes the structure factor of the Neél order ground state:

Sz�(k) = lim
B↘0

lim
Λ↗∞

⟨ΦGS,B ∣Sz−kS
z
k ∣ΦGS,B⟩ , (85)

which describes the correlations of spins transverse to the magnetic field.
Note: here the excitation energy of spin-waves was calculated. By definition (1) it is greater or
equal than the ground state energy, thus the upper bound for ε(k) is also valid for ε0(k).
To bound the structure factor for the Heisenberg model from below, one can use the Shastry
inequality (57):

2Sz�(k) ≥
m2
s

√
1 − γk

√
ρx + ρz

√
1 + γk

. (86)

Note: notations here are slightly different from the ones used in Section 3.
This bound can be extended to the anisotropic model (∆ ≠ 0) by recalculating the commutation
relation (51):

[[Szq ,HΛ(B)], Sz−q] = 2(ρx(1 +∆γq) + ρz(∆ + γq)), (87)

2Sz�(k) ≥
m2
s

√
1 − γk

√
ρx(1 +∆γk) + ρz(∆ + γk)

. (88)

Using equations (88) and (84), one can finally obtain (66).

∎

The expectation value ε(k) can be bounded from below as well. The transverse structure factor
Sz�(k) is bounded from above in the form given by:

2Sz�(k) ≤ [
(ρx + ρy)(1 − γk)

∆(1 + γk)
]

1/2

, (89)

which is the corollary from an upper bound (151). For discussion on how the structure factor is
connected with the Duhamel two-point function as well as the proof of an upper bound for DTF,
see Appendix B. Using (89) one can obtain:

ε(k) ≥ 2dJ
√

∆(ρx + ρy)(1 − γ2
k). (90)

Appendices

A Bogoliubov inequality

In case if one defines the scalar product through:

(A,C) = ∫
dω

ω
AA�,C(ω), (91)

then from the Cauchy-Schwarz inequality:

∫
dω

ω
AA�,A(ω) ⋅ ∫

dω

ω
AC�,C(ω) ≥ ∣∫

dω

ω
AA�,C(ω)∣

2

. (92)

If one also uses the fact that coth(x) ≥ 1
x

for x > 0:

AA�,A(ω) coth(βω/2) ≥ (
βω

2
)

−1

AA�,A(ω), (93)
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then the following inequality may be obtained:

β

2
⟨{A�,A}⟩ ≥ ∫

dω

ω
AA�,A(ω). (94)

Using the energy weighted sum rule:

⟨[A�, [H,B]]⟩ = ⟨[A�,HB −BH]⟩ = ⟨A�
HB −A�BH −HBA�

+BHA�⟩ , (95)

⟨A�
HB⟩ = Z−1

∑
m,n

exp(−βEm) ⟨m∣A�
∣n⟩ ⟨n∣HB ∣m⟩ =

= Z−1
∑
m,n

En exp(−βEm) ⟨m∣A�
∣n⟩ ⟨n∣B ∣m⟩ , (96)

⟨−A�BH⟩ = −Z−1
∑
m,n

exp(−βEm) ⟨m∣A�
∣n⟩ ⟨n∣BH ∣m⟩ =

= Z−1
∑
m,n

(−Em) exp(−βEm) ⟨m∣A�
∣n⟩ ⟨n∣B ∣m⟩ , (97)

⟨−HBA�⟩ = −Z−1
∑
m,n

exp(−βEm) ⟨m∣HB ∣n⟩ ⟨n∣A�
∣m⟩ =

= Z−1
∑
m,n

(−En) exp(−βEn) ⟨m∣A�
∣n⟩ ⟨n∣B ∣m⟩ , (98)

⟨BHA�⟩ = Z−1
∑
m,n

exp(−βEm) ⟨m∣BH ∣n⟩ ⟨n∣A�
∣m⟩ =

= Z−1
∑
m,n

Em exp(−βEn) ⟨m∣A�
∣n⟩ ⟨n∣B ∣m⟩ , (99)

⟨[A�, [H,B]]⟩ = Z−1
∑
m,n

(exp(−βEm)(En −Em) + exp(−βEn)(Em −En))⋅

⋅ ⟨m∣A�
∣n⟩ ⟨n∣B ∣m⟩ = ∫ dωωAA�,B(ω). (100)

One can now calculate (using C = [H,B]):

⟨[B�, [H,B]]⟩ = ∫ dωωAB�,B(ω), (101)

AC�,C(ω) = Z−1
∑
m,n

(exp(−βEm) − exp(−βEn)) ⟨m∣C�
∣n⟩ ⟨n∣C ∣m⟩ δ(ω −En +Em) =

= Z−1
∑
m,n

(exp(−βEm) − exp(−βEn)) ⟨m∣B�En −EmB
�
∣n⟩ ⟨n∣EnB −EmB ∣m⟩ δ(ω −En +Em) =

= ω2AB�,B(ω), (102)

∫
dω

ω
AC�,C(ω) = ⟨[B�, [H,B]]⟩ , (103)

∫
dω

ω
AA�,C(ω) = ∫ dωAA�,B(ω) = ⟨[A�,B]⟩ . (104)

Finally, using (92) one obtains:

β

2
⟨{A�,A}⟩ ⟨[B�, [H,B]]⟩ ≥ ∣ ⟨[A�,B]⟩ ∣

2

, (105)

or in the form used in literature (Bogoliubov inequality):

⟨{A�,A}⟩ ⟨[B�, [H,B]]⟩ ≥
2

β
∣ ⟨[A�,B]⟩ ∣

2

. (106)
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B Upper bound for Duhamel two-point function and it’s
relation to structure factor

The results presented in this section were originally obtained by Freeman J. Dyson, Elliot H. Lieb
and Barry Simon in [5]. This section gives a commentary on the connection between the structure
factor and Duhamel two-point function as well as proves the upper bound for the latter.

B.1 Classic Heisenberg model and transition to quantum case

The existence of phase transitions in a variety of classical spin systems, including certain classic
Heisenberg models, is proved in [6]. However, while latter deal directly with infinite volume
expectations, it is useful to rephrase the result in terms of the finite volume statements.
Let Λ be a parallelepiped in the simple ν-dimensional cubic lattice Zν of the form:

Λ = {α ∶ 0 ≤ α1 ≤ L1 − 1, ...,0 ≤ αν ≤ Lν − 1}. (107)

In the classical model one has a “spin” Sα for each α ∈ Λ, where S has three components S(j).
The classical spins are normalized by:

Sα ⋅Sα ≡∑
j

(S(j)α )
2
= 1 (108)

and distributed according to the isotropic spherical distribution dλ(S). The basic Hamiltonian is:

H = −∑
α,i

Sα ⋅Sα+δi , (109)

where δi is the unit vector with i-th component equal to one (nearest neighbor). H has periodic
boundary conditions. Using the normalization condition (108), one can rewrite the Hamiltonian
in form:

H = −∑
α,i

Sα ⋅Sα+δi =
1

2
(ν∣Λ∣ −∑

i

∑
α

Sα ⋅Sα) +
1

2
(ν∣Λ∣ −∑

i

∑
α

Sα+δi ⋅Sα+δi)−

−∑
α,i

Sα ⋅Sα+δi = const +
1

2
∑
α,i

(Sα −Sα+δi)
2
. (110)

The partition function Z is defined by:

Z = ∫ exp ( − βH(S))∏
α∈Λ

dλ(Sα) (111)

and thermal excitations by:

⟨f(S)⟩Λ,β = Z
−1
∫ f(S) exp ( − βH(S))∏

α∈Λ

dλ(Sα). (112)

The basic result of [6] claims that for sufficiently large β:

lim
Λ↗∞

⟨
3

∑
j=1

(∣Λ∣
−1
∑
α∈Λ

S(j)α )
2

⟩

Λ,β

≠ 0. (113)

One can introduce the Fourier variables Ŝp by:

Ŝp = ∣Λ∣
−1/2
∑
α∈Λ

exp(−ip ⋅α)Sα, (114)
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where p runs through the dual lattice Λ∗, i.e. pj =
2π
Lj
lj . The inverse transform is defined by:

Sα = ∣Λ∣
−1/2
∑
p

exp(ip ⋅α)Ŝp, (115)

Sα = ∣Λ∣
−1/2
∑
p

exp(ip ⋅α)∣Λ∣
−1/2
∑
γ∈Λ

exp(−ip ⋅ γ)Sγ =∑
p
∑
γ∈Λ

∣Λ∣
−1Sγ ∣Λ∣δγ,α = Sα. (116)

The Plancherel sum rule gives:

∑
p

Ŝp ⋅ Ŝ−p =∑
p

[∣Λ∣
−1/2
∑
α∈Λ

exp(−ip ⋅α)Sα] ⋅ [∣Λ∣
−1/2
∑
γ∈Λ

exp(ip ⋅ γ)Sγ] =

= ∑
α,γ

δα,γSα ⋅Sγ = ∣Λ∣. (117)

In terms of these Fourier variables Hamiltonian H has the form:

H = −∑
α,i

Sα ⋅Sα+δi = −
1

2
∑

α,∣δ∣=1

Sα ⋅Sα+δ =

= −
1

2
∑
α,δ

[∑
p

∣Λ∣
−1/2 exp(ip ⋅α)Ŝp] ⋅ [∑

p′
∣Λ∣

−1/2 exp (ip′ ⋅ (α + δ))Ŝp′] =

= −
1

2
∣Λ∣

−1
∑
p,p′

Ŝp ⋅ Ŝp′ ∑
α,δ

exp (ip ⋅α + ip′ ⋅ (α + δ)) = −
1

2
∑
p
∑
δ

exp(−ip ⋅ δ)Ŝp ⋅ Ŝ−p =

= −
1

2
(2ν∣Λ∣ −∑

p
∑
δ

Ŝp ⋅ Ŝ−p) −∑
p
∑
δ

exp(−ip ⋅ δ)Ŝp ⋅ Ŝ−p = const +∑
p

EpŜp ⋅ Ŝ−p, (118)

where:

Ep =
1

2
∑
δ

(1 − exp(−ip ⋅ δ)) = ν −
ν

∑
i=1

cos(pi). (119)

For small ∣p∣:
Ep ∼ ∣p∣2/2. (120)

In terms of Fourier variables the [6] result is:

lim
Λ→∞

∣Λ∣
−1gp=0 ≠ 0, (121)

where:
gp = ⟨Ŝp ⋅ Ŝ−p⟩ . (122)

Due to the Plancherel rule (117) (or the normalization condition for spins (108)):

∣Λ∣
−1
∑
p

gp = 1. (123)

Hence the [6] proof gives:

gp ≤
3

2βEp
; p ≠ 0. (124)

Note: the physical interpretation of this fact is that the average energy Ep ⟨Sp ⋅S−p⟩ per mode is
dominated by its equiparticion value of kT

2
per each degree of freedom.

The bound (124) implies that:

lim
Λ→∞

∣Λ∣
−1
∑
p≠0

gp ≤
3

2β
Gν(0), (125)
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where:
Gν(0) = (2π)−ν ∫

∣pi∣≤π

(Ep)
−1dνp. (126)

Note: the Fourier integral was obtained as a limiting case of the Fourier sum.
For ν ≥ 3, Gν(0) is finite as Ep ∼ ∣p∣2. The bound is now defined by:

lim
Λ→∞

∣Λ∣
−1gp=0 ≠ 0

lim
Λ→∞

∣Λ∣
−1
∑
p

gp = 1 Ô⇒
3

2β
Gν(0) < 1 Ô⇒ β >

3

2
Gν(0) ≡ βFSS (127)

lim
Λ→∞

∣Λ∣
−1
∑
p≠0

gp ≤
3

2β
Gν(0)

Note: the bound and the Plancherel sum rule force the macroscopic occupation of p = 0 mode.
This is kind of spin-wave Bose-condensation. The above discussion can be transfered from antifer-
romagnetic to ferromagnetic case by substituting p with (π, ..., π) − p.
To explain the problems one needs to overcome in extending the [6] result to the quantum case,
one should first describe a model. Let S be a fixed number chosen from 1

2
,1, 3

2
,... Each lattice

site α ∈ Λ has associated with it (2S + 1)-dimensional space Hα ≃ C2S+1 and three self-adjoined
operators Sα obeying the usual commutation relations:

[Sjα, S
(k)
α ] = iεjklS

(l)
α . (128)

However, the normalization condition (108) is replaced by:

S2
α = S(S + 1), (129)

since dimHα = 2S + 1. In volume Λ the basic Hilbert space is:

HΛ = ⊗
α∈Λ

Hα ≃ C(2S+1)∣Λ∣. (130)

Now, partition function and thermal expectations are given by:

Z = TrHΛ
[exp(−βHΛ)], (131)

⟨A⟩Λ,β = Z
−1 TrHΛ

[A exp(−βHΛ)]. (132)

Due to commutation relations:
[S(j)α , S

(k)
β ] = iδα,βεjklS

(l)
α . (133)

For Fourier transformed operators one obtains:

[Ŝ(j)p , Ŝ(k)q ] = [∣Λ∣
−1/2
∑
α∈Λ

exp(−ip ⋅α)S(j)α , ∣Λ∣
−1/2
∑
γ∈Λ

exp(−iq ⋅ γ)S(k)γ ] =

= ∣Λ∣
−1
∑
α,γ

exp(−ip ⋅α − iq ⋅ γ)[S(j)α , S(k)γ ] = ∣Λ∣
−1
∑
α,γ

exp(−ip ⋅α − iq ⋅ γ)iδα,γεjklS
(l)
α =

= ∣Λ∣
−1/2iεjklŜ

(l)
p+q, (134)

[Ŝ(j)p , (Ŝ(j)p )
∗
] = [Ŝ(j)p , Ŝ

(j)
−p ] = 0 Ô⇒ gp = ⟨Ŝp ⋅ Ŝ−p⟩ = g−p. (135)

The relation for Hamiltonian H in terms of Fourier variables matches the classic result (118).
The Plancherel sum rule (117) in quantum case is replaced by:

∣Λ∣
−1
∑
p

gp = S(S + 1). (136)
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The problem is that in quantum case the bound for the structure factor can’t hold. If the bound
was true:

gp ≤
3

2β

1

Ep
, (137)

β →∞, Λ - fixed and finite Ô⇒ gp → 0, (138)

but on the other hand, when β →∞:

Sα ⋅Sγ →

⎧⎪⎪
⎨
⎪⎪⎩

S2 , if α ≠ γ

S(S + 1) , if α = γ
Ô⇒ gp ≠ 0. (139)

It is believed that:

gp ≤

√
3

2
S coth (

√
2

3
SβEp) (140)

is true for the ferromagnet. For antiferromagnet gp should be replaced with Duhamel two-point
function bp.

B.2 Duhamel two-point function

For quantum systems in finite volume with the partition function Z = Tr[exp(−βH)], one can
define the Duhamel two-point function (DTF) by:

(A,B) = Z−1

1

∫
0

Tr [ exp(−xβH)A exp(−(1 − x)βH)B]dx. (141)

The name of the function comes from the fact that 1
2
µ2(A,A)Z is the second-order term in a

perturbation expansion for Tr[exp(−βH + µA)], first derived by Duhamel. This leads to the second
definition:

(A,B)Z =
∂2

∂µ∂λ
Tr[exp(−βH + µA + λB)]. (142)

From both the definitions it is obvious that:

(A,B) = Z−1 ∂2

∂µ∂λ
Tr[exp(−βH + µA + λB)] =

∂2

∂µ∂λ
Tr[exp(−βH + µB + λA)] = (B,A), (143)

(A,B) = Z−1

1

∫
0

Tr [ exp(−xβH)A exp(−(1 − x)βH)B]dx =

= Z−1

0

∫
1

Tr [ exp(−(1 − y)βH)A exp(−yβH)B]dy =

= Z−1

1

∫
0

Tr [ exp(−yβH)B exp(−(1 − y)βH)A]dy = (B,A). (144)

In particular, if A = Ar + iAi, then:

(A∗,A) = (Ar − iAi,Ar + iAi) = (Ar,Ar) + (Ai,Ai). (145)
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If ⟨B⟩µ = [Tr[exp(−βH + µA)]]
−1

Tr[B exp(−βH + µA)], then:

∂ ⟨B⟩µ

∂µ

RRRRRRRRRRRµ=0

=
∂

∂µ

⎡
⎢
⎢
⎢
⎢
⎣

Tr[B exp(−βH + µA)]

Tr[exp(−βH + µA)]

⎤
⎥
⎥
⎥
⎥
⎦

=

=
Tr[AB exp(−βH + µA)]

Tr[exp(−βH + µA)]
−

Tr[A exp(−βH + µA)]Tr[B exp(−βH + µA)]

(Tr[exp(−βH + µA)])
2

=

=
Tr[AB exp(−βH + µA)]

Tr[exp(−βH + µA)]
− ⟨A⟩ ⟨B⟩ = (A,B) − ⟨A⟩ ⟨B⟩ = (A − ⟨A⟩ ,B − ⟨B⟩ ). (146)

For quantum systems DTF substitutes the thermal two-point function:

⟨A,B⟩ = Z−1 Tr[AB exp(−βH)]. (147)

Note: unlike (A,B), ⟨A,B⟩ is not symmetric A and B.
If H has a complete set of eigenfunctions ϕi with Hϕi = εiϕi and aij = (ϕi,Aϕj) and bij =

(ϕi,Bϕj),then:

(A,B) = Z−1

1

∫
0

∑
i,j

aijbji exp(−xβεi) exp(−(1 − x)βεj)dx =∑
i,j

aijbji( exp(−βεi) − exp(−βεj))

βZ(εj − εi)
.

(148)

B.3 Upper bound for Duhamel two-point function

For each lattice site α one can choose a copy of Hα of the same Hilbert space and copies of n + 1

basic operators denoted by S
(1)
α , ..., S

(n)
α ,Ãα.The basic Hamiltonian in Λ is:

H = ∑
α∈Λ

(Ãα −
ν

∑
m=1

n

∑
j=1

S(j)α S
(j)
α+δm

) = ∑
α∈Λ

(Aα +
1

2

ν

∑
m=1

(Sα −Sα+δm)
2
), (149)

where Aα = Ãα − νS
2
α. The Fourier transformed operator Ŝp was defined previously by (114) and:

b(j)p = (Ŝ(j)p , Ŝ
(j)
−p ) (150)

is the Duhamel two-point function.
Theorem 1 For Hamiltonians of the form (149) in boxes Λ of sides L1 × ... × Lν with each an Lj
even integer and such that Theorem 2 holds:

b(j)p ≤
1

2βEp
, (151)

where Ep is given by (119).
Theorem 2 Let H be a Hamiltonian of the form (149) in which all the matrices are real. Let
{hi(α) ∶ α ∈ Λ, i = 1, ..., ν} be ν∣Λ∣ vectors in Rn. Let ∂jhi ≡ hi(α + δj) − hi(α) and σ(h) =

∑αh(α) ⋅Sα. Let Λ be L1, ..., Lν with each Li even. Then:

Tr[exp(−βH + σ(∑
i
∂ihi))]

Tr[exp(−βH)]
≤ exp(

∣∣h∣∣2

2β
), (152)

where ∣∣h∣∣2 = ∑i,α ∣hi(α)∣2.
◻ (of Theorem 1, given Theorem 2)
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From (152) by substituting hi → λhi, subtracting 1 from both sides, dividing by λ2 and taking
limit λ→ 0:

Tr[exp(−βH + σ(∑
i
∂iλhi))]

Tr[exp(−βH)]
− 1 ≤ exp(

∣∣λh∣∣2

2β
) − 1, (153)

lim
λ→0

⎛

⎝

Tr[exp(−βH + σ(∑
i
∂iλhi))] −Tr[exp(−βH)]

λ2 Tr[exp(−βH)]

⎞

⎠
≤ lim
λ→0

⎛

⎝

1

λ2
exp(

λ2∣∣h∣∣2

2β
) −

1

λ2

⎞

⎠
. (154)

For the r.h.s. of (154):

lim
λ→0

⎛

⎝

1

λ2
exp(

λ2∣∣h∣∣2

2β
) −

1

λ2

⎞

⎠
= lim
λ→0

∣∣h∣∣2

2β

1

∫
0

exp(
λ2∣∣h∣∣2

2β
)dx =

∣∣h∣∣2

2β
. (155)

For the l.h.s of (154), using the notation A = σ(∑i ∂ihi):

lim
λ→0

⎛

⎝

Tr[exp(−βH + σ(∑
i
∂iλhi))] −Tr[exp(−βH)]

λ2 Tr[exp(−βH)]

⎞

⎠
=

= lim
λ→0

(
1

λ2
[Z−1 Tr[exp(−βH + λA)] − 1]) = lim

λ→0
(

1

Zλ2
[Tr[exp(−βH + λA)] −Tr[exp(−βH)]]) =

= lim
λ→0

(
1

Zλ2
[Tr[exp(−βH)] +

λ2

2
(A,A)Z −Tr[exp(−βH)]]) = (A,A)/2. (156)

Finally, one obtains the following inequality:

((σ(∑
i

∂ihi))
∗

, σ(∑
i

∂ihi)) ≤ β
−1
∑
i,α

∣hi(α)∣
2. (157)

Note: for complex-valued h it also works due to (145).
One can fix p ≠ 0 and j ∈ {1, ..., n} and choose:

[hi(α)]k = δj,k ∣Λ∣
−1/2( exp(ip ⋅ (α − δi)) − exp(ip ⋅α)). (158)

Then:

∑
i,α

∣hi(α)∣
2
= ∑
i,α,k

δj,k ∣Λ∣
−1( exp(ip ⋅ (α − δi)) − exp(ip ⋅α))

2
=

=∑
i,α

∣Λ∣
−1 exp(2ip ⋅α)( exp(−ip ⋅ δi)−1))

2
=∑

i

( exp(−ip ⋅ δi)−1))
2
⋅∑
α

∣Λ∣
−1 exp(2ip ⋅α) = 2Ep,

(159)

while:

[∑
i

∂ihi(α)]
k
= δj,k ∣Λ∣

−1/2
∑
i

( exp(ip ⋅α)−exp(ip ⋅ (α + δi))−exp(ip ⋅ (α − δi))+exp(ip ⋅α)) =

= 2δj,k ∣Λ∣
−1/2 exp(ip ⋅α) ∑

∣δ∣=1

(1 − exp(ip ⋅ δ)) = δj,k ∣Λ∣
−1/2

(2Ep) exp(ip ⋅α). (160)

Finally, (157) becomes:

4E2
p(σ

(j)
p , σ

(j)
−p ) ≤ (2Ep)β

−1. (161)
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Lemma Let H1 be a finite dimensional vector space and let H = H1⊗H1. If A,B, ... are operators

on H1, one can use the symbols A,B, ... for the operators A⊗1,B⊗1, ... and the symbols Ã, B̃, ... for
1⊗A,1⊗B, ... Then for any self-adjoint operators A,B,C1, ...,Cl with real matrix representations
and real numbers h1, ..., hl:

(Tr [ exp (A + B̃ −
l

∑
i=1

(Ci − C̃i − hi)
2
)])

2

≤

≤ Tr [ exp (A + Ã −
l

∑
i=1

(Ci − C̃i)
2
)]Tr [ exp (B + B̃ −

l

∑
i=1

(Ci − C̃i)
2
)]. (162)

◻ If one uses the notation:

α = Tr[exp(A + B̃ −
l

∑
i=1

(Ci − C̃i − hi)
2
)], (163)

then, using the Trotter product formula:

α = lim
n→∞

αn, (164)

where:

αn = Tr[{ exp(A/n) exp(B̃/n) exp(−(C1 − C̃1 − h1)
2
/n)...}

n

]. (165)

Using the operator identity:

exp(−D2) = (4π)−1/2
∫ exp(ikD) exp(−k2

/4)dk, (166)

one may obtain:

αn = (4π)−nl/2 ∫ Tr[exp(A/n) exp(B̃/n) exp(ik1(C1 − C̃1)/
√
n + ...)]⋅

⋅ exp(−k2
/4) exp(−ik1h1/

√
n − ...)dnlk. (167)

Operators can be thought of as matrices, which are real due to the initial assumption. Then:

Tr[exp(A/n) exp(B̃/n) exp(ik1(C1 − C̃1)/
√
n + ...)] =

= Tr[exp(A/n) exp(ik1C1/
√
n + ...)](Tr[exp(B/n) exp(ik1C1/

√
n + ...)])

∗

. (168)

Note: the reality of matrices is used to take the complex conjugate without reversing the order of

the factors, also the fact that for any of the two operators D and F , D̃ and F commute, used here.
Using the Cauchy-Schwarz inequality on dnlk integration and (168) with A = B one obtains:

∣αn∣
2
= α∗nαn = (4π)−nl/2 ∫ dnlkTr[exp(A/n) exp(B̃/n) exp(−ik1(C1 − C̃1)/

√
n − ...)]⋅

⋅ exp(−k2
/4) exp(ik1h1/

√
n + ...) × (4π)−nl/2 ∫ dnlk⋅

⋅Tr[exp(A/n) exp(B̃/n) exp(ik1(C1 − C̃1)/
√
n + ...)] exp(−k2

/4) exp(−ik1h1/
√
n − ...) =

= (A,B) ≤ (A,A) ⋅ (B,B) =

= [(4π)−nl/2 ∫ dnlkTr[exp(A/n) exp(Ã/n) exp(ik1(C1 − C̃1)/
√
n + ...)] exp(−k2

/4)]×

× [(4π)−nl/2 ∫ dnlk ⋅Tr[exp(B/n) exp(B̃/n) exp(ik1(C1 − C̃1)/
√
n − ...)] exp(−k2

/4)]. (169)
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∎

◻ (of Theorem 2)
One can define:

Z({hi(α)}) = Tr[exp(− ∑
α∈Λ

{βAα +
β

2

ν

∑
m=1

[Sα −Sα+δm + β−1hm(α)]
2
})], (170)

then:

Z({hi(α)}) = Tr[exp(−βH + σ(∑
i

∂ihi) −
1

2β
∑
α∈Λ

ν

∑
m=1

(hm(α))
2
)], (171)

Z({0}) = Tr[exp(−βH)]. (172)

In these notations (152) is equivalent to:

Z({hi(α)}) ≤ Z({0}), (173)

for all real {hi(α)}. Since Z is continuous in all the h’s and goes to zero if any hi(α) → ∞, it
takes its maximum value Z0 at some set of h’s, one can denote as {h̄i(α)}. If this maximum value
is taken at more than one point, one can choose the set of h’s with the largest number of h’s equal
to zero.
One must now show that h̄i(α) for all α, i. If this is not true, by relabeling the following set is
obtained:

h̄i(α) ≠ 0 for i = 1 and α = (L − 1,0, ...,0). (174)

Let H1 be the tensor product of all the Hγ , such that γ = (γ1, ..., γν) with 0 ≤ γ1 ≤ 1
2
L1 − 1 and

γ2, ..., γν arbitrary. Then HΛ = H1 ⊗H1 in such a way that S̃γ = Sγ , where γ̃2 = γ2, ..., γ̃ν = γν
and γ̃1 = L1 − 1 − γ1. Using this representation:

Z({hi(α)}) = Tr[exp(D + D̃ −
l

∑
i=1

(Ci − C̃i − yi)
2
)], (175)

where D is all “interactions” between H1 spins, Ci - between spins at sites (0, γ2, ..., γν) and
( 1

2
L1 − 2, γ2, ..., γν), y’s corresponding to the h’s to the factor of β. Using Lemma one concludes

that:
[Z({hi(α)})]

2
≤ Z({h

(1)
i (α)})Z({h

(2)
i (α)}), (176)

where {h
(1)
i (α)} (or {h

(2)
i (α)}) is a set of {hi(α)} invariant under γ → γ̃ reflection and equal to

the {h̄i(α)} on the H1 (or H̃1) and zero on the bonds between H1 and H̃1.
Note: basically, what one does here is the separation of the real lattice in two parts and calculation
of an upper bound (176) for the total value of Z function. One only needs {hi(α)} invariant under
γ → γ̃ reflection, because other terms will cancel out.

Now, on the one hand, either {h
(1)
i (α)} or {h

(2)
i (α)} must contain strictly more zero elements than

{h̄i(α)} (due to the definition). On the other hand, since Z({h̄i(α)}) = Z0 and Z({hi(α)}) ≤ Z0,

by inserting {hi(α)} = {h̄i(α)} into (176), one obtains:

Z2
0 ≤ Z({h

(1)
i (α)})Z({h

(2)
i (α)}). (177)

So, set {h
(1)
i (α)} + {h

(2)
i (α)} has more zero elements than {h̄i(α)} and defines maximum. This

contradicts with the definition of {h̄i(α)}.

∎
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C Zero temperature derivations

One can directly use the zero-temperature inequality (12) to obtain the (86). In order to do that
one needs to rewrite the anticommutation relation {a�, a} in a way done in [7]:

⟨{a�, a}⟩ =∑
n

( ⟨0∣a ∣n⟩ ⟨n∣a� ∣0⟩ + ⟨0∣a� ∣n⟩ ⟨n∣a ∣0⟩ ) ≤

≤∑
n

√
εn

√
ε−1
n ∣ ⟨0∣a ∣n⟩ ⟨n∣a� ∣0⟩ + ⟨0∣a� ∣n⟩ ⟨n∣a ∣0⟩ ∣ =

=∑
n

√
εn

√
ε−1
n

√
⟨0∣a ∣n⟩ ⟨n∣a� ∣0⟩ + ⟨0∣a� ∣n⟩ ⟨n∣a ∣0⟩

2
. (178)

Here and further in this section the expectation value should be taken considering only the ground
state of the system. After implying the Cauchy-Schwarz inequality for summation:

∑
n

√
εn

√
ε−1
n

√
⟨0∣a ∣n⟩ ⟨n∣a� ∣0⟩ + ⟨0∣a� ∣n⟩ ⟨n∣a ∣0⟩

2
≤

≤

√

∑
n

εn( ⟨0∣a ∣n⟩ ⟨n∣a� ∣0⟩ + ⟨0∣a� ∣n⟩ ⟨n∣a ∣0⟩ )

√

∑
n

ε−1
n ( ⟨0∣a ∣n⟩ ⟨n∣a� ∣0⟩ + ⟨0∣a� ∣n⟩ ⟨n∣a ∣0⟩ ).

(179)

The value under first square root is the expectation value of double commutator:

⟨[[a�,H], a]⟩ = ⟨a�Ha −Ha�a − aa�H + aHa�⟩ = ⟨0∣a�Ha + aHa� ∣0⟩ =

=∑
n

εn( ⟨0∣a ∣n⟩ ⟨n∣a� ∣0⟩ + ⟨0∣a� ∣n⟩ ⟨n∣a ∣0⟩ ). (180)

While the second expectation value is a second order perturbation term in the expansion:

∑
n

ε−1
n ( ⟨0∣a ∣n⟩ ⟨n∣a� ∣0⟩ + ⟨0∣a� ∣n⟩ ⟨n∣a ∣0⟩ ) = ⟨0∣a

I − ∣0⟩ ⟨0∣

H
a� ∣0⟩ + ⟨0∣a�

I − ∣0⟩ ⟨0∣

H
a ∣0⟩ =

=
∂2

∂λ∂µ
Tr[H + λa + µa�]. (181)

The last expression may be rewritten as Bogoliubov inner product (or Duhamel two-point function
as referred in this document), for which the bound is proved by the (151). Finally, considering
Q = (π, ..., π), a = Syq and b = Szq+Q and using (12) and (178) one can obtain (86).
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