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In these notes, we give an introduction to the Gaussian isoperimetric inequality and a generaliza-
tion in form of the Gaussian noise stability. The Gaussian isoperimetric inequality arises naturally
as an infinite dimensional version of the Euclidean isoperimetric inequality where the optimizers for
a fixed Gaussian measure are half-spaces instead of balls.
The Gaussian noise stability of a measurable set is the probability that two standard Gaussian

vectors with correlation ρ both belong to this set. Fixing the Gaussian measure of the set half-
spaces maximize this probability which we prove by applying techniques from stochastic calculus.
This statement contains the Gaussian isoperimetric inequality as special case in the limit ρ→ 1.
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1. Introduction
One of the oldest mathematical problems is the isoperimetric inequality in two dimensions [8, 12]. An isoperi-
metric inequality connects the volume of a set with its surface area. The isoperimetric inequality in Rn asserts
that for every compact subset A ⊂ Rn with smooth boundary ∂A and every ball B ⊂ Rn with voln(A) = voln(B)
we have the inequality

voln−1(∂A) ≥ voln−1(∂B).

An equivalent formulation is given by
voln(Ar) ≥ voln(Br)

where Mr
..= {x ∈ X; d(x, y) ≤ r for some y ∈ M} is the r-extension of a set M ⊂ X in a metric space (X, d).

(Clearly, we consider X = Rn with the Euclidean distance.) The equivalence of these two statements can be
proved via Minkowski’s formula

voln−1(∂A) = lim inf
r↓0

1
r

[voln(Ar)− voln(A)] (1.1)

for a sufficiently smooth boundary ∂A.
Moreover, there is the following isoperimetric inequality on the sphere SNρ in RN+1 with radius ρ. The sphere

SNρ is equipped with the geodesic distance as metric and the normalized rotationally invariant measure σNρ .
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Theorem 1.1. Let A ⊂ SNρ be a measurable subset and B ⊂ SNρ a geodesic ball such that σNρ (A) ≥ σNρ (B) then

σNρ (Ar) ≥ σNρ (Br)

for every r ≥ 0.

We denote the standard Gaussian measure on Rn by γ, the one-dimensional standard Gaussian measure by
γ1 and the cummulative distribution function of γ1 by

Φ(s) ..= 1√
2π

∫ s

−∞
e−t

2/2dt.

The Gaussian measure γ can be considered as the limit of σN√
N

for N → ∞ in the following sense: If
πN+1,n : RN+1 → Rn denotes the projection onto the first n-components of a vector in RN+1 (N ≥ n) then we
have

lim
N→∞

σN√
N

(
π−1
N+1,n(A) ∩ SN√

N

)
= γ(A)

for all measurable A ⊂ Rn. A proof of this fact can be found in [8].
As geodesic balls on SNρ arise as the intersection of the sphere with half-spaces it is not difficult to believe

that in the Gaussian isoperimetric inequality, half-spaces will fill the role of balls and geodesic balls in Rn and
on SNρ , respectively. A half-space H in Rn is a set of the form

H = {x ∈ Rn; 〈x, u〉 ≥ a}

for some a ∈ R and a unit vector u ∈ Rn.
Therefore, the following result can be seen as an infinite dimensional version of Theorem 1.1.

Theorem 1.2. If A ⊂ Rn is measurable and H is a half-space with γ(A) ≥ γ(H) then

γ(Ar) ≥ γ(Hr)

for every r ≥ 0.

Since γ({x ∈ Rn; 〈x, u〉 ≥ a}) = Φ(a) the theorem can be stated equivalently as

γ(Ar) ≥ Φ(Φ−1(γ(A)) + r) (1.2)

for every r ≥ 0. This formulation will immediately imply Theorem 2.2, a result about the concentration of the
Gaussian measure.
Using Minkowski’s formula (1.1) as a motivation to define the Gaussian surface area of a measurable set

A ⊂ Rn via
γ+(A) ..= lim inf

r↓0

γ(Ar)− γ(A)
r

where Ar ..= {x ∈ Rn; |x−y| ≤ r for some y ∈ A} is the r-extension of A we can state the Gaussian isoperimetric
inequality in the following form.

Theorem 1.3 (Gaussian isoperimetric inequality). If A ⊂ Rn is a measurable subset then

γ+(A) ≥ γ1(Φ−1(γ(A))) = I(γ(A)).

Here, we used the notation I(x) ..= γ1(Φ−1(x)). In section 4 we will deduce this inequality from a generaliza-
tion first proved by Borell in [2].
For n-dimensional standard Gaussian vectors X and Y with EXiYj = ρδij and 0 < ρ < 1 he introduced the

Gaussian noise stability Prρ(X ∈ A, Y ∈ A), i.e. the probability that X and Y lie both in a measurable set
A ⊂ Rn and showed that it fulfills

Prρ(X ∈ A, Y ∈ A) ≤ Prρ(X1 ≤ a, Y1 ≤ a) (1.3)

for 0 < ρ < 1 and a ..= Φ−1(γ(A)). Note that a is chosen such that γ(A) = γ({x ∈ Rn;x1 ≤ a}). This means
that half-spaces maximize the Gaussian noise stability among all measurable sets with the same Gaussian
measure. In section 4 we will see that Theorem 1.3 follows in the limit ρ → 1 indeed from this inequality or
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more precisely from the Gaussian noise sensitivity, i.e. the inequality

Prρ(X ∈ A, Y /∈ A) ≥ Prρ(X1 ≤ a, Y1 ≥ a) (1.4)

which is equivalent to (1.3). The proof follows a semigroup argument proposed by Ledoux in [7].
In section 4 we will verify that Prρ(X ∈ A, Y ∈ A) = Sρ2(A) for every measurable subset A ⊂ Rn where

Sρ(A) = P
(√

ρX +
√

1− ρY ∈ A,√ρX +
√

1− ρY ′ ∈ A
)

(1.5)

for 0 ≤ ρ ≤ 1 where X,Y and Y ′ are independent standard Gaussian vectors in Rn. In the following we will
refer to this quantity as the Gaussian noise stability. With this definition, (1.3) can be formulated as in the
following theorem.

Theorem 1.4 (Gaussian noise stability). If A,H ⊂ Rn are measurable subsets such that H is a half-space with
γ(A) = γ(H) and 0 ≤ ρ ≤ 1 then

Sρ(A) ≤ Sρ(H).

Definition (1.5) gives rise to the following generalization. For a measurable subset A ⊂ Rn we define the
r-stability of A for r > 1 and 0 < ρ < 1 through

Srρ(A) ..= E
[
P
(√

ρX +
√

1− ρY ∈ A
∣∣∣X)r] .

We show in section 4 that this quantitiy introduced by E. Mossel is a generalization of the Gaussian noise
stability. Indeed, we will prove that Sρ(A) = S2

ρ(A) for every measurable subset A ⊂ Rn and 0 < ρ < 1.
Therefore, Theorem 1.4 and thus (1.3) will follow from the next result which is the main result of these notes.
In order to describe the equality cases in the theorem properly, we need the following notation. For a

measurable subset B ⊂ Rn we define its center of mass with respect to the Gaussian measure v(B) = (vi(B))ni=1
with the components

vi(B) =
∫
B

xiγ(x)dx.

If vi(B) = 0 for i = 1, . . . , n then we set v(B) = e1. Moreover, we set q(B) ..= ‖v(B)‖2, i.e. the distance of this
center of mass from the origin. This enables us to associate the half-space

H(B) ..= {x ∈ Rn; 〈v(B), x〉 ≥ α} (1.6)

to B where α is chosen such that γ(B) = γ(H(B)). The importance of H(B) is caused by the fact that the
symmetric difference of B and H(B) is a null set if Srρ(B) agrees with the r-stability of a half-space with
Gaussian measure γ(B). More precisely, the following generalization of Theorem 1.4 holds true.

Theorem 1.5. For a measurable subset A ⊂ Rn, 0 < ρ < 1 and r > 1 we have

Srρ(H(A)) ≥ Srρ(A). (1.7)

Equality holds if and only if the symmetric difference of A and H(A) has measure zero.

Isaksson and Mossel proved (1.7) first in [6] and Neeman established the equality case in [10]. We will give a
proof based on stochastic calculus due to Eldan [4].
We conclude this section with an outline of the remaining contents of this note. The next section contains

some notations and remarks as well as an application of the Gaussian isoperimetric inequality to concentration
of the Gaussian measure. In the third section, we give a proof of the main result of this note, Theorem 1.5, based
on techniques from stochastic calculus. The following section consist of a proof of the Gaussian isoperimetric
inequality which uses Theorem 1.5. In the end of this work, we collect some abstract auxiliary results employed
in the previous sections.

2. Notations and Remarks
In this section, we fix some notation frequently used in the sequel and we make some remarks about the
connection between a measurable set B and its half-space H(B).
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We denote the density of the Gaussian distribution with expectation value v ∈ Rn and covariance matrix σ2
1

for σ > 0 by

γv,σ(x) ..= 1
σn(2π)n/2

exp
(
− 1

2σ2 |x− v|
2
)
.

We use the abbreviations γ(x) ..= γ0,1(x) for the density of the n-dimensional standard normal distribution and
γ1(x) ..= γ0,1(x) for the density of the one-dimensional standard normal distribution. By abuse of notation we
write

γ(A) ..=
∫
A

γ(x)dx

for a measurable subset A ⊂ Rn and dγ for the measure γ0,1(x)dx on Rn and γ1 for the one-dimensional version,
respectively.
Moreover, we define for s ∈ R the auxiliary function q̃ through

q̃(s) ..= −
∫ Φ−1(s)

−∞
tdγ1(t).

For the next remark, we remind the definition of H(B) in (1.6).

Remark 2.1. For a half-space H = {x; 〈v(B), x〉 ≥ α} we have

q(H(B)) =
∫ ∞
α/q(B)

tdγ1(t) = q̃(γ(B)).

Proof. Take S ∈ SO(n) such that Sv(B) = q(B)e1. Then

SH(B) = {y; y1q(B) ≥ α}.

Thus,∫
H(B)

xγ(x)dx =
∫
SH(B)

S−1xγ(x)dx = S−1
∫
SH(B)

xγ(x)dx = S−1e1

∫
α/q(B)

tγ1(t)dt = v(B)
q(B)

∫
α/q(B)

tγ1(t)dt.

For the second equality, we observe that similarly as before we get γ(H(B)) = Φ(−α/q(B)). Therefore, since
γ(B) = γ(H(B)) by definition of H(B) we have

q̃(γ(B)) = −
∫ −α/q(B)

−∞
tγ1(t)dt =

∫ ∞
α/q(B)

tγ1(t)dt =

∣∣∣∣∣
∫
H(B)

xγ(x)dx

∣∣∣∣∣ .

Concentration of measure
Here, we give an application of the Gaussian isoperimetric inequality in the version (1.2). The following result
states that a function is concentrated around its mean with respect to the standard Gaussian measure, i.e. the
Gaussian measure of the set where the function is far away from its mean is small.

Theorem 2.2. If f : Rn → R is a Lipschitz continuous function with Lipschitz constant L and M is its median
with respect to γ then

γ ({x ∈ Rn; f(x) ≥M + t}) ≤ Φ
(
− t
L

)
≤ exp

(
− t2

2L2

)
for every t ≥ 0.

Proof. Set A ..= {x ∈ Rn; f(x) ≤ M}. Thus, γ(A) = 1/2 since M is the median of f . Since f has Lipschitz
constant L we have |f(x) −M | ≤ Ldist(x,A) where dist(x,A) = inf{|x − y|; y ∈ A}. Thus, At/L ⊂ {x ∈
Rn; f(x) ≤M + t}. Using Φ−1(γ(A)) = Φ−1(1/2) = 0 and (1.2) we get

γ({x ∈ Rn; f(x) ≤M + t}) ≥ γ(At/L) ≥ Φ(t/L).

The first inequality follows from this estimate and the second inequality is a standard estimate of Φ.

4



3. Proof of the r-stability inequality
In this section we give a proof of the inequality in Theorem 1.5 which is based on [4]. For a proof of the equality
case, we refer to [4].
Let Wt be a standard Brownian motion in Rn adapated to the filtration (Ft)t∈[0,1] on the probability space

(Ω1,Σ1, P1). We define the stochastic process

St ..= P(W1 ∈ A|Ft) (3.1)

for t ∈ [0, 1]. For t ∈ [0, 1) we have the relation

St = P(W1 ∈ A|Wt) =
∫
A

γWt,
√

1−t(x)dx. (3.2)

This shows that the process St interpolates between γ(A) and 1A(W1) (compare (3.10)).
Using the substitution y = (1− t)−1/2(x−Wt) and the notation

At ..= A−Wt√
1− t

we can rewrite (3.2) as
St =

∫
At

γ(x)dx = γ(At). (3.3)

Corresponding to the definition (3.1) we introduce as analogue for the half-space H(A) the stochastic process

Qt ..= P(W̃1 ∈ H(A)|F̃t) (3.4)

for a standard Brownian motion W̃t in Rn adapted to the filtration (F̃t)t∈[0,1] on the probability space (Ω2,Σ2, P2).
Similarly as for St, the process Qt is an interpolation between γ(H(A)) and 1H(A)(W̃1).
Our first goal is an equivalent formulation of Theorem 1.5 given in Proposition 3.2. Therefore, we need the

following technical Lemma which uses the notion of the quadratic variation.
For an Itô process Xt with dXt = v(t, ω)dBt(ω) where Bt is a Brownian motion on Rn the quadratic variation

[X]t of Xt is the stochastic process

[X]t ..=
∫ t

0
|vs|2ds

or in differential notation
d[X]t = |vt|2dt. (3.5)

Lemma 3.1. We have
d[S]t = (1− t)−1q2(At)dt, (3.6)

d[Q]t = (1− t)−1q̃2(Qt)dt. (3.7)

Proof. Lemma A.2 with φ = 1A gives

dSt = d
∫
A

Ft(x)dx

= (1− t)−1
〈∫

A

(x−Wt)Ft(x)dx, dWt

〉
= (1− t)−1

(2π(1− t))n/2

〈∫
A

(x−Wt) exp
(
− 1

2(1− t) |x−Wt|2
)
dx,dWt

〉
= (1− t)−1/2

〈∫
At

yγ(y)dy,dWt

〉
= (1− t)−1/2

n∑
i=1

(∫
At

xidγ(x)
)
dW i

t (3.8)

where we used the notation of Lemma A.2 and the substitution y = (1− t)−1/2(x−Wt) in the last step.
Therefore, since St is an Itô process by (3.8) the relation in (3.6) follows immediately from (3.5).
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Moreover, as in (3.3) we get
Qt = γ (Ht)

where
Ht

..= H(A)− W̃t√
1− t

.

Applying Lemma A.2 with φ = 1H(A) and proceeding as in (3.8) yields

dQt = (1− t)−1/2
〈∫

Ht

xdγ(x),dW̃t

〉
which implies in the same ways as in (3.6) that

d[Q]t = (1− t)−1q (Ht)2 dt = (1− t)−1q̃2(Qt)dt

where we used q(Ht) = q̃(γ(Ht)) = q̃(Qt) by Remark 2.1.

Proposition 3.2. The assertion of Theorem 1.5 is equivalent to

E
[∫ ρ

0
Qr−2
t d[Q]t

]
≥ E

[∫ ρ

0
Sr−2
t d[S]t

]
(3.9)

with equality if and only if γ(A∆H(A)) = 0.

Proof. Applying Itô’s formula to (3.8) yields

dSrt = rSr−1
t dSt + 1

2r(r − 1)Sr−2
t (dSt)2

= rSr−1
t dSt + 1

2r(r − 1)Sr−2
t (1− t)−1

n∑
i=1

(∫
At

xidγ(x)
)2

(dW i
t )2 = rSr−1

t dSt + 1
2r(r − 1)Sr−2

t d[S]t

where we used dW i
t dW

j
t = δijdt in the last two steps.

Integrating and taking the expectation of the last equation implies

Srρ(A) = ESrρ = Sr0 + E
[∫ ρ

0
dSrt

]
= Sr0 + 1

2r(r − 1)E
[∫ ρ

0
Sr−2
t d[S]t

]
where we used in the second step

E
[∫ ρ

0
rSr−1

t dSt
]

= E

[
n∑
i=1

∫ ρ

0
rSr−1

t (1− t)−1/2
(∫

At

xidγ(x)
)
dW i

t

]
= 0

because of Theorem 3.2.1 (iii) in [11]. In particular, for r = 2 we get Sρ(A) = γ(A)2 + E[S]ρ.
As before, we get

Srρ(H(A)) = E[Qrρ] = Qr0 + 1
2r(r − 1)E

[∫ ρ

0
Qr−2
t d[Q]t

]
.

Since Q0 = γ(H(A)) = γ(A) = S0 the equivalence of Theorem 1.5 and (3.9) follows.

Our next goal is to couple the processes St and Qt such that they are both time changed versions of the same
Brownian motion. The first step is to show that by enlarging the probability spaces we can assume that St
and Qt are time changed versions of two Brownian motions. By the definitions (3.1) and (3.4) the stochastic
processes St and Qt are martingales with respect to the filtrations (Ft)t, (F̃t)t, respectively. Therefore, we can
apply Theorem A.3 to St − S0 and Qt −Q0.
Applying Theorem A.3 to (Ω1,Σ1, P1) and the process St − S0 yields a probability space (Ω′1,Σ′1, P ′1) which

is an enlargement of (Ω1,Σ1, P1) and a process B(t) such that B(t) − S0 is a standard Brownian motion in R
and

St = B([S]t)

for t ∈ [0, 1].
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Moreover, applying Theorem A.3 to (Ω2,Σ2, P2) and the processQt−Q0 yields a probability space (Ω′2,Σ′2, P ′2)
which is an enlargement of (Ω2,Σ2, P2) and a process B̃(t) such that B̃(t)−Q0 is a standard Brownian motion
in R and

Qt = B̃([Q]t)

for t ∈ [0, 1].
The next Lemma is used in the proof of the validity of (3.9).

Lemma 3.3. We have almost surely

Tf ..= [S]1 = min{t > 0;B(t) ∈ {0, 1}}, T̃f ..= [Q]1 = min{t > 0; B̃(t) ∈ {0, 1}}.

Proof. Due to 0 < γ(A) < 1 and the strict positivity of the density of the Gaussian measure we have 0 < St < 1
and 0 < Qt < 1 for 0 ≤ t < 1. Since

S1 = P(W1 ∈ A|F1) = E[1A(W1)|W1] = 1A(W1) (3.10)

we get S1 ∈ {0, 1} and similarly Q1 ∈ {0, 1} and therefore B([S]1) = S1 ∈ {0, 1}, B̃([Q]1) = Q1 ∈ {0, 1}. As
[S]t < [S]s and [Q]t < [Q]s for t < s the assertion follows.

In the second step, we can now introduce a probability space such that the two Brownian motions B(t) and
B̃(t) agree.
Applying Theorem A.8 to the probability spaces (Ω′1,Σ′1, P ′1) and (Ω′2,Σ′2, P ′2) and the processes B(t) − S0

and B̃(t) − Q0 = B̃(t) − S0 we can assume that the processes Wt, W̃t, St, Qt, B(t) and B̃(t) are defined on a
common probability space (Ω,Σ, P ) such that B(t) = B̃(t) for all t ≥ 0. In the following we will therefore write
B(t) instead of B̃(t).
The functions τ1 and τ2 in the next Lemma will provide appropriate changes of variables for the integrals in

(3.9) in order to prove this inequality.

Lemma 3.4. The functions T1(t) ..= [S]t and T2(t) ..= [Q]t are invertible and their inverse functions τ1(T ) and
τ2(T ) are differentiable for 0 < T < Tf with

τ ′1(T ) = (1− τ1(T ))q−2(Aτ1(T )), τ ′2(T ) = (1− τ2(T ))q̃−2(B(T )).

Proof. By (3.6) and (3.7) the processes [S]t and [Q]t are almost surely continuous and strictly increasing for
t ∈ (0, 1). Therefore, the inverse functions exist on [0, Tf ). Moreover, (3.6) implies

T ′1(τ1(T )) = (1− τ1(T ))−1q2(Aτ1(T ))

for T ∈ (0, Tf ). As τ1(T ) ∈ (0, 1) and q(Aτ1(T )) > 0 almost surely for T ∈ (0, Tf ) we have T ′1(τ1(T )) 6= 0 and
thus τ1(T ) differentiable for T ∈ (0, Tf ). Similarly, we get the differentiability of τ2(T ) for T ∈ (0, Tf ).
Applying the formula for the derivative of the inverse function yields

τ ′1(T ) = (1− τ1(T ))q−2(Aτ1(T )), τ ′2(T ) = (1− τ2(T ))q̃−2(B(T ))

for T ∈ (0, Tf ) where we used for the conclusion of the second relation that

Qτ2(T ) = B([Q]τ2(T )) = B(T ) (3.11)

as T2(t) = [Q]t and τ2(T ) are inverse functions.

The following Lemma combined with changes of variables via τ1 and τ2 will allow us to prove (3.9) which will
conclude the proof of Theorem 1.5 by Proposition 3.2.

Lemma 3.5. We have
[S]t ≤ [Q]t

for all t ∈ [0, 1].

The proof of this Lemma is based on Lemma 3.6 which we show at the end of this section.

Proof. We define the functions

ω1(T ) ..= − log(1− τ1(T )), ω2(T ) ..= − log(1− τ2(T )).
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Lemma 3.4 implies
ω′1(T ) = q−2(Aτ1(T )), ω′1(T ) = q̃−2(B(T )).

Applying Lemma 3.6 yields
q(Aτ1(T )) ≤ q̃(γ(Aτ1(T ))) = q̃(B(T ))

where we used γ(At) = St = B([S]t), i.e. γ(Aτ1(T )) = B(T ), in the last step. Therefore, we get

ω′1(T )− ω′2(T ) = q−2(Aτ1(T ))− q̃−2(B(T )) ≥ 0

which implies
ω1(T ) ≥ ω2(T ) (3.12)

for T ∈ [0, Tf ) since ω1(0) = ω2(0) by [S]0 = 0 = [Q]0. Using (3.12) we get τ1(T ) ≥ τ2(T ) for T ∈ [0, Tf ). Thus,

[S]t ≤ [Q]t

for t ∈ [0, 1].

Now, we will prove the inequality Theorem 1.5 by reducing (3.9) to another inequality which immediately
follows from Lemma 3.5. Note that for a proof of the equality case we refer to [4].

Proof of Theorem 1.5. By Proposition 3.2 it suffices to show (3.9). Using the substitution t = τ2(T ), Lemma
3.4 and (3.11) we get ∫ ρ

0
Qr−2
t d[Q]t =

∫ ρ

0
Qr−2
t (1− t)−1q̃2(Qt)dt =

∫ [Q]ρ

0
B(T )r−2dT.

Similarly, the substitution t = τ1(T ) and Lemma 3.4 yields∫ ρ

0
Sr−2
t d[S]t =

∫ [S]ρ

0
B(T )r−2dT.

Therefore, the inequality (3.9) is equivalent to

E

[∫ [Q]ρ

0
B(T )r−2dT

]
≥ E

[∫ [S]ρ

0
B(T )r−2dT

]
. (3.13)

As B(T ) > 0 for 0 < T < Tf by Lemma 3.3 (3.13) holds true because of Lemma 3.5. This concludes the proof
of Theorem 1.5.

The following lemma is a crucial ingredient of the proof of the Lemma 3.5. It establishes the intuitive
statement that half-spaces maximize the distance between the origin and the center of mass with respect to the
Gaussian measure.

Lemma 3.6. If B ⊂ Rn is a measurable set then

q(B) ≤ q̃(γ(B)) = q(H(B)). (3.14)

Equality holds if and only if γ(B∆H(B)) = 0.

The following proof is based on the next Lemma.

Lemma 3.7. For a measurable function m : R→ [0, 1] we have∣∣∣∣∫
R
xm(x)dγ1(x)

∣∣∣∣ ≤ q̃(∫
R
m(x)dγ1(x)

)
with equality if and only if there is α ∈ R such that m(x) = 1{y≥α}(x) for almost every x ∈ R with

Φ(−α) =
∫
R
m(x)dγ1(x).
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Proof. First, by possibly replacing m(x) by m(−x) we can assume that∫
R
xm(x)dγ1(x) ≥ 0.

We set h(x) ..= 1{y≥α}(x) where α is chosen such that∫
R
m(x)dγ1(x) =

∫
R
h(x)dγ1(x). (3.15)

Note that the last integral equals Φ(−α). In particular,

q̃

(∫
R
m(x)dγ1(x)

)
= −

∫ −α
−∞

tγ1(t)dt =
∫ ∞
α

tγ1(t)dt =
∫
R
th(t)dγ1(t).

Therefore, the statement of the Lemma is equivalent to show that

0 ≤
∫
R
t(h(t)−m(t))dγ1(t) =

∫
R

(t− α)(h(t)−m(t))dγ1(t)

where in the last step we used (3.15). But the integrand of the last integral is non-negative since (t − α) has
the same sign as (h(t) − m(t)) as 0 ≤ m(t) ≤ 1 for all t ∈ R. Moreover, the integral vanishes if and only if
m(t) = h(t) for almost all t ∈ R.

Proof of Lemma 3.6. If q(B) = 0 then the inequality is trivially fulfilled. Assume now q(H(B)) = q(B) = 0
then H(B) = Rn and therefore γ(B) = γ(H(B)) = 1 which implies γ(B∆H(B)) = 0. For q(B) > 0 we define

θ ..= q(B)−1
∫
B

xγ(x)dx.

Thus, we have ∣∣∣∣∫
B

〈θ, x〉γ(x)dx
∣∣∣∣ = q(B)−1

n∑
i=1

vi(B)
∫
B

xiγ(x)dx = q(B)−1‖v(B)‖22 = q(B).

For p : Rn → R, x 7→ 〈θ, x〉 we define the pushforward measure of γ|B as µ ..= p#γ(· ∩B). Then the formula for
the change of variables implies∫

B

〈θ, x〉γ(x)dx =
∫
B

p(x)dx =
∫
R
tdµ(t) =

∫
R
tm(t)dγ1(t)

where we introduced the function m(t) = dµ
dγ1 (t). Therefore, Lemma 3.7 yields

q(B) =
∣∣∣∣∫

R
tm(t)dγ1(t)

∣∣∣∣ ≤ q̃(∫
R
m(t)dγ1(t)

)
= q̃(µ(R)) = q̃(γ(B)).

Thus, the inequality follows from Remark 2.1.
If γ(B∆H(B)) = 0 we clearly have q(B) = q(H(B)). Assume that we have equality in (3.14). Then by

Lemma 3.7 we have
γ(B) = γ(p−1([α,∞) ∩B))

with Φ(−α) = γ(p−1([α,∞))).
We assume equality in (3.14) and set Hθ,α

..= {x; 〈x, θ〉 ≥ α} = p−1([α,∞)). First, we prove γ(Hθ,α∆B) = 0
and afterwards Hθ,α = H(B). As in the proof of Remark 2.1 one can show γ(Hθ,α) = Φ(−α). Since 1s≥α(t) =
m(t) = dµ

dγ1 (t) we have

γ(Hθ,α ∩B) = γ(p−1([α,∞))) =
∫ ∞
α

dγ1 = Φ(−α) = γ(Hθ,α)

and
γ(B) = γ(Rn ∩B) = µ(R) = µ([α,∞)) = γ(Hθ,α ∩B).
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Thus, γ(Hθ,α∆B) = 0. Moreover, writing H(B) = {x; 〈x, v(B)〉 ≥ β} we get by Remark 2.1

Φ
(
− β

q(B)

)
= γ(H(B)) = γ(B) = γ(Hθ,α) = Φ(−α)

i.e. α = β/q(B) and therefore H(B) = Hθ,α.

4. Proof of the Gaussian Isoperimetric Inequality
In this section, we derive the Gaussian Isoperimetric Inequality, Theorem 1.3, from the Gaussian noise stability,
Theorem 1.4. First, we will prove that the latter result is a consequence of Theorem 1.5.

Proof of Theorem 1.4. In order to show Sρ(A) = S2
ρ(A) for all measurable sets A ⊂ Rn we first prove that

P
(√

ρX +
√

1− ρY ∈ A,√ρX +
√

1− ρY ′ ∈ A
∣∣∣X) = P

(√
ρX +

√
1− ρY ∈ A

∣∣∣X)P(√ρX +
√

1− ρY ′ ∈ A
∣∣∣X)

(4.1)
for independent standard Gaussian vectors X, Y and Y ′. This means that √ρX +

√
1− ρY ∈ A and √ρX +√

1− ρY ′ ∈ A are independent with respect to P(·|X). Applying Lemma A.1 we get

P
(√

ρX +
√

1− ρY ∈ A,√ρX +
√

1− ρY ′ ∈ A
∣∣∣X) = g(X)

for g(x) ..= E
[
1A(x√ρ+ Y

√
1− ρ)1A(x√ρ+ Y ′

√
1− ρ)

]
. Since Y and Y ′ are independent we have g(x) =

E
[
1A(x√ρ+ Y

√
1− ρ)

]
E
[
1A(x√ρ+ Y ′

√
1− ρ)

]
. Hence, (4.1) follows from Lemma A.1.

Now, we compute

Sqρ(A) = E
[
P
(√

ρX +
√

1− ρY ∈ A
∣∣∣X)2

]
= E

[
P
(√

ρX +
√

1− ρY ∈ A
∣∣∣X)P(√ρX +

√
1− ρY ′ ∈ A

∣∣∣X)]
= E

[
P
(√

ρX +
√

1− ρY ∈ A and √ρX +
√

1− ρY ′ ∈ A
∣∣∣X)]

= P
(√

ρX +
√

1− ρY ∈ A and √ρX +
√

1− ρY ′ ∈ A
)

= Sρ(A)

where we introduced a standard Gaussian vector Y ′ such that X,Y and Y ′ are independent in the second step
and used (4.1) in the third step.
If X,Y are standard n-dimensional Gaussian vectors such that EXiYj = ρδij then their joint density is given

by

f(x, y) ..= 1√
(2π)2n(1− ρ2)n

exp
(
− 1

2(1− ρ2) (〈x, x〉+ 〈y, y〉 − 2ρ〈x, y〉)
)
.

Therefore, for a measurable set A ⊂ Rn, using the substitution z = (y − ρx)/
√

1− ρ2 we get

P (X ∈ A, Y ∈ A) =
∫
Rn

∫
Rn

1A(x)1A(y)f(x, y)dxdy

=
∫
Rn

∫
Rn

1A(x)1A(ρx+ z
√

1− ρ2)γ(x)γ(z)dxdz

= P
(
Z1 ∈ A, ρZ1 +

√
1− ρ2Z2 ∈ A

)
(4.2)

for some independent standard n-dimensional Gaussian vectors Z1 and Z2.
Replacing ρ by √ρ we see that Sρ2(A) = P(X ∈ A, Y ∈ A) = Prρ(X ∈ A, Y ∈ A). By the rotational

invariance of the standard Gaussian measure we conclude that Theorem 1.4 follows from Theorem 1.5.

Now, we turn to the proof of the Gaussian isoperimetric inequality. We show this result by following the
reasoning in section 2.2 of [10] which is based on [7].
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As in the proof of the Gaussian isoperimetric inequality by Bakry and Ledoux [1] we will use the Ornstein-
Uhlenbeck operator semigroup to deduce the Gaussian isoperimetric inequality from the Gaussian noise stability.
Therefore, we define for any t ≥ 0 the operator Pt : L2(Rn, γ)→ L2(Rn, γ) through

(Ptf)(x) =
∫
Rn
f
(
xe−t + y

√
1− e−2t

)
dγ(y)

for almost every x ∈ Rn. Futhermore, we introduce the operator L : C∞0 (Rn)→ L2(Rn, γ) through

(Lf)(x) =
n∑
i=1

(
∂2f

∂x2
i

(x)− xi
∂f

∂xi
(x)
)

= ∆f(x)− 〈x,∇f(x)〉

for almost every x ∈ Rn. Note that (Pt)t≥0 is a semigroup, i.e. P0 = id and PtPs = Pt+s for all t, s ≥ 0, and
the operator L is the generator of this semigroup, i.e. Pt = etL.
We collect some simple properties of the operators Pt and L in the following lemma.

Lemma 4.1. It holds

(i) For a smooth function f and t ≥ 0 we have

d
dtPtf = LPtf.

(ii) The operator Pt : L2(γ)→ L2(γ) is self-adjoint for every t ≥ 0.

(iii) For a smooth function f we have
∇Ptf = e−tPt∇f.

Note that we write Ef ..= Ef(X) for f ∈ L1(γ) and a standard n-dimesional Gaussian vector X, i.e.

Ef =
∫
Rn
f(x)dγ(x).

Using this notation and ∇γ(x) = −xγ(x), it is straight forward to check the following version of an integration
by parts formula

EgLf =
∫
Rn
gLf dγ = −

∫
Rn
〈∇g,∇f〉 dγ = −E〈∇g,∇f〉. (4.3)

Proposition 4.2. For smooth bounded functions f, g : Rn → R with g ≥ 0 we have

EgPtf − Egf ≤ ‖g‖∞√
2π

arccos(e−t)E|∇f |. (4.4)

Proof. We start the estimate with rewritting the right-hand side. Since

Ptf − f =
∫ t

0

d
dsPsfds =

∫ t

0
LPsfds

by Lemma 4.1 (i) we have the following relations for the right-hand side of the assertion

EgPtf − Egf =
∫ t

0
EgLPsfds = −

∫ t

0
E〈∇g,∇Psf〉ds = −

∫ t

0
E〈∇Psg,∇f〉ds, (4.5)

where we used (4.3) in the second step and Lemma 4.1 (ii) and (iii) in the third step. The definition of Ps,
Lemma 4.1 (iii) and integration by parts, observing ∇γ(y) = −yγ(y), yield

(∇Psg)(x) =e−s
∫
Rn

(∇g)
(
xe−s + y

√
1− e−2s

)
dγ(y)

= e−s√
1− e−2s

∫
Rn
yg
(
xe−s + y

√
1− e−2s

)
dγ(y)

= e−s√
1− e−2s

E
[
Zg
(
xe−s + Z

√
1− e−2s

)]
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for a standard n-dimensional Gaussian vector Z. Combining this formula with (4.5), we get

EgPtf − Egf = −
∫ t

0

e−s√
1− e−2s

E
[
〈Z2,∇f(Z1)〉g

(
Z1e

−s + Z2
√

1− e−2s
)]

ds (4.6)

with two independent standard n-dimensional Gaussian vectors Z1 and Z2. The estimates 0 ≤ g ≤ ‖g‖∞ imply

E
[
〈Z2,∇f(Z1)〉g

(
Z1e

−s + Z2
√

1− e−2s
)]
≥ ‖g‖∞Emin{0, 〈Z2,∇f(Z1)〉}

= 1
2E [〈Z2,∇f(Z1)〉 − |〈Z2,∇f(Z1)〉|] .

As E〈Z2, a〉 = 0 for a ∈ Rn we have

1
2E [〈Z2, a〉 − |〈Z2, a〉|] = −1

2 |a|
∫
Rn
|x1|dγ(x) = − |a|√

2π
.

Therefore, conditioning on Z1 and applying Lemma A.1 we get

E
[
〈Z2,∇f(Z1)〉g

(
Z1e

−s + Z2
√

1− e−2s
)]

= E
[
E
[
〈Z2,∇f(Z1)〉g

(
Z1e

−s + Z2
√

1− e−2s
)∣∣∣Z1

]]
≥ − 1√

2π
E|∇f(Z1)|.

Thus, (4.6) yields

EgPtf − Egf ≤ ‖g‖∞√
2π

E|∇f |
∫ t

0

e−s√
1− e−2s

ds = ‖g‖∞√
2π

E|∇f |
∫ e−t

1

1√
1− s2

ds = ‖g‖∞√
2π

E|∇f | arccos(e−t).

This concludes the proof.

By approximating the characteristic function of a measurable set appropriately we get the following corollary
of the previous result:

Corollary 4.3. If A ⊂ Rn is a measurable subset and 0 < ρ < 1 then

Prρ(X ∈ A, Y /∈ A) ≤ 1√
2π

arccos(ρ)γ+(A).

Proof. Taking g = 1A, f = −1A and ρ = e−t on the left-hand side of (4.4) we get

EgPtf − Egf = −P
(
X ∈ A,Z1ρ+ Z2

√
1− ρ2 ∈ A

)
+ γ(A) = Prρ(X ∈ A, Y /∈ A) (4.7)

for some independent standard Gaussian vectors Z1 and Z2. Here, in the last step we used (4.2).
For ε > 0 we take fε : Rn → R a smooth function such that f |A = 1, f |Acε = 0 and |∇fε| ≤ 1 + ε−1. Clearly,

lim
ε↓0

EfεPtfε − Ef2
ε = E1APt1A − E1A = Prρ(X ∈ A, Y /∈ A)

where we used γ(Aε\A)→ 0 for ε ↓ 0 in the first step and (4.7) in the second step. Moreover,

lim inf
ε↓0

E|∇fε| ≤ lim inf
ε↓0

(
1 + ε−1) γ(Aε\A) = γ+(A).

Thus, the assertion follows from (4.4).

Lemma 4.4. If a ∈ R then

lim
ρ↑1

Prρ(X1 ≤ a, Y1 ≥ a)
arccos(ρ) = γ1(a)√

2π
.

Proof. Note that
Prρ(X1 ≤ a, Y1 ≥ a) = P(Z1 ≤ a, ρZ1 +

√
1− ρ2Z2 ≥ a) (4.8)

for independent standard Gaussian variables Z1 and Z2 by (4.2). First, we consider the case a = 0. Because of
(4.8) we have to compute the Gaussian area of a wedge of R2 with opening angle arccos(ρ). Hence, Prρ(X1 ≤
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0, Y1 ≥ 0) = arccos(ρ)/(2π) by the rotational invariance of the Gaussian measure. As γ1(0) = 1/
√

2π we have
equality in Lemma 4.4 for all ρ ∈ (0, 1).
For a 6= 0 we can, without loss of generality, assume that a > 0. Otherwise, we replace a by −a, X1 by −Y1

and Y1 by −X1 and use the symmetry of the Gaussian distribution. Thus, by (4.8) we get

Prρ(X1 ≤ a, Y1 ≥ a) =
∫
R2
1{x≤a}1{ρx+

√
1−ρ2y≥a}dγ

1(x)dγ1(y)

= 1
2π

∫ ∞
0

re−r
2/2
∫ 2π

0
1{r sin(θ)≤a}1{r sin(θ+α)≥a}dθdr

where in the second step we transformed the integral to polar coordinates and used α = arccos(ρ), i.e. ρ sin(θ)+√
1− ρ2 cos(θ) = cos(α) sin(θ) + sin(α) cos(θ) = sin(θ + α).
Next, we evaluate the inner integral. If a ≥ r then {r sin(θ + α) ≥ a} is empty and thus the inner integral

is zero. If a < r then Ir ..= {θ ∈ [0, 2π]; r sin(θ) ≥ a} is an interval and the inner integral equals the size of
(Ir − α) \ Ir. If Ir − α and Ir intersect then the size is equal to α. If they do not intersect then the size is
π − 2 arcsin(a/r). Since the intersection is empty if and only if α ≥ π − 2 arcsin(a/r) we get∫ 2π

0
1{r sin(θ)≤a}1{r sin(θ+α)≥a}dθ = 1{a<r}min

{
α, π − 2 arcsin

(a
r

)}
=
{
1{a<r}α, r ≥ a/ cos(α/2),
1{a<r}(π − 2 arcsin(a/r)), r < a/ cos(α/2),

where we used that α ≤ π−2 arcsin(a/r) is equivalent to r ≥ a/ cos(α/2) since arcsin is monotonically increasing.
By integrating with respect to r we get

2πPrρ(X1 ≤ a, Y1 ≥ a) =
∫ ∞
a

αre−r
2/2dr −

∫ a/ cos(α/2)

a

re−r
2/2(α− π + 2 arcsin(a/r))dr

= αe−a
2/2 −

∫ a/ cos(α/2)

a

re−r
2/2(α− π + 2 arcsin(a/r))dr.

For ρ → 1 we have α = arccos(ρ) → 0 and thus cos(α/2) ∼ 1 − α2/8, i.e. a/ cos(α/2) ∼ a + aα2/8. The
integration of above integral runs over an interval of length of order α2. Since the integrand is bounded the
integral divided by α goes to zero as α goes to zero. Hence, the assertion follows.

Note that

γ+({x ∈ Rn;x1 ≤ a}) = lim inf
r→0

∫ a+r

a

e−t
2/2

√
2πr

dt = lim inf
r→0

∫ 1

0

e−(rs−a)2/2
√

2π
ds = γ1(a) (4.9)

and the previous lemma show that the inequality in Corollary 4.3 is sharp in the limit ρ→ 1 for half-spaces.
Now, Theorem 1.3 is a simple consequence of Theorem 1.4, more precisely (1.4), and Lemma 4.4.

Proof of Theorem 1.3. Let A ⊂ Rn be a measurable set and B ..= {x ∈ Rn;x1 ≤ Φ−1(γ(A))}. Then B is a
half-space with γ(A) = γ(B). Taking the limit ρ ↑ 1 in Corollary 4.3 yields

lim sup
ρ↑1

√
2πPrρ(X ∈ A, Y /∈ A)

arccos(ρ) ≤ γ+(A).

Using (1.4) for 0 < ρ < 1 we get

lim sup
ρ↑1

√
2πPrρ(X ∈ B, Y /∈ B)

arccos(ρ) ≤ lim sup
ρ↑1

√
2πPrρ(X ∈ A, Y /∈ A)

arccos(ρ) ≤ γ+(A).

Using Lemma 4.4 and (4.9) we get that the left-hand side equals γ1(Φ−1(γ(A))) = I(γ(A)). This concludes the
proof of Theorem 1.3.
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A. Auxiliary results
In this section, we collect some auxiliary results which are either of a technical nature or well-known abstract
results. We start with a helpful lemma for computing the conditional expectation which we used in the proofs
of Theorem 1.4 and Proposition 4.2.

Lemma A.1. Let X and Y be independent random variables and ϕ a measurable map such that E|ϕ(X,Y )| <
∞. If we define g(x) ..= Eϕ(x, Y ) then E[ϕ(X,Y )|X] = g(X).

The proof can be found in Example 5.1.5 on page 225 in [3]. The rest of the section provides tools for the
proof of Theorem 1.5 beginning with the computation of an Itô differential.

Lemma A.2. For every x ∈ Rn the process

Ft(x) ..= γWt,
√

1−t(x)

is a local martingale satisfying the stochastic differential equation

F0(x) = γ(x), dFt(x) = (1− t)−1Ft(x)〈x−Wt, dWt〉. (A.1)

For any measurable function φ : Rn → R with φ(x) < C1 +C2|x|p for some constants C1, C2, p > 0, the process

t 7→
∫
Rn
φ(x)Ft(x)dx

is a martingale with respect to the filtration (Ft)t with

d
∫
Rn
φ(x)Ft(x)dx = (1− t)−1

〈∫
Rn
φ(x)(x−Wt)Ft(x)dx, dWt

〉
(A.2)

where 〈·, ·〉 denotes the standard scalar product on Rn.

Proof. We set

gx,t(y) ..= γy,
√

1−t(x) = 1
(2π(1− t))n/2

exp
(
−|x− y|

2

2(1− t)

)
. (A.3)

Direct calculations show

∇ygx,t(y) = x− y
1− t gx,t(y), ∆ygx,t(y) =

(
|x− y|2

(1− t)2 −
n

1− t

)
gx,t(y) (A.4)

and
∂

∂t
gx,t(y) =

(
n

2(1− t) −
|x− y|2

2(1− t)2

)
gx,t(y).

Thus, Itô’s formula yields

dFt(x) = dgx,t(Wt) = ∂

∂t
gx,t(Wt)dt+ 〈∇gx,t(Wt),dWt〉+ 1

2∆gx,t(Wt)dt

= 〈∇gx,t(Wt),dWt〉 = (1− t)−1Ft(x)〈x−Wt,dWt〉

which proves (A.1) and establishes that Ft(x) is a local martingale. (Compare Exercise 7.12 (d) in [11].)
Let φ : Rn → R be a measurable function with |φ(x)| ≤ C1 + C2|x|p for all x ∈ Rn and some constants

C1, C2, p > 0. Then we are allowed to interchange differentiation and integration which yields

∇
∫
Rn
φ(x)gx,t(y)dx =

∫
Rn
φ(x)∇gx,t(y)dx,

(
∂

∂t
+ 1

2∆
)∫

Rn
φ(x)gx,t(y)dx = 0

where we used (A.3) and (A.4). Applying Itô’s formula implies (A.2).
Moreover, as ∫

Rn
φ(x)Ft(x)dx = E [φ(W1)|Ft]

the left hand side defines a martingale.
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In the above proof of Theorem 1.5 we used the following version of the Dambis/Dubins-Schwarz Theorem
which is proved in Theorem V. (1.7) in [13]. A probability space (Ω̃, Ã, P̃ ) with a filtration (F̃t)t and a surjective
map π : Ω̃→ Ω is called an enlargement of the probability space (Ω,A, P ) with filtration (Ft)t if π−1(Ft) ⊂ F̃t
for all t and π#(P̃ ) = P . We extend a process X defined on Ω to Ω̃ by setting X(ω̃) = X(ω) if π(ω̃) = ω.
Theorem A.3. Let M be a continuous local martingale with respect to the filtration (Ft)t which vanishes at
zero. We denote the inverse function of the quadratic variation [M ]t by Tt. Then there exist an enlargement
(Ω̃, Ã, P̃ ) with a filtration (F̃t)t and a Brownian motion β on Ω̃ independent of M such that

Bt =
{
MTt , if t < [M ]∞
M∞ + βt−[M ]∞ , if t ≥ [M ]∞

is a standard Brownian motion.
The remaining part of this section is based on chapter 5 in [5]. We start with Definition 5.5 in [5] which gives

an unusual definition of a regular measure space.
Definition A.4. A measure space (X,B, µ) is called regular if X is a compact metric space and B consists of
all Borel sets in X.
A measurable map φ : (X,B, µ) → (Y,D , ν) between two measure spaces (X,B, µ) and (Y,D , ν) is called

measure preserving if ν is the pushforward measure of µ under φ, i.e. φ#µ = ν or ν(A) = µ(φ−1(A)) for all
A ∈ D .
If φ : (X,B, µ)→ (Y,D , ν) is a measure preserving map then the map

Φ: L2(Y,D , ν)→ L2(X,B, µ), f 7→ f ◦ φ

defines an isometry by the change of variables formula. In particular, the image Ran Φ ⊂ L2(X,B, µ) is
a closed linear subspace. We denote the orthogonal projection onto this subspace by P . Moreover, for every
f ∈ L2(X,B, µ) there exists a unique g ∈ L2(Y,D , ν) such that Φ(g) = Pf . This function g is called conditional
expectation and denoted by E[f |Y]. Note that the measure preserving map φ is suppressed in this notation. If
Y = X, φ = idX , µ = ν and D ⊂ B a sub-σ-algebra then this definition of the conditional expectation coincides
with the usual definition.
The next result is a special case of Theorem 5.8 on page 108 in [5] where we consider only measure preserving

maps instead of more general homomorphisms of measure spaces.
Theorem A.5 (Disintegration). Let (X,B, µ) is a regular probability space in the sense of Definition A.4,
(Y,D , ν) a measure space and φ : X → Y a measure preserving map. Then there exists a measurable map from
Y to M (X), denoted by y 7→ µy, satisfying
(i) For every f ∈ L1(X,B, µ) we have f ∈ L1(X,B, µy) for almost every y ∈ Y and E[f |Y](y) =

∫
fdµy for

almost every y ∈ Y .

(ii) For every f ∈ L1(X,B, µ) we have ∫
Y

(∫
X

fdµy
)
dν(y) =

∫
X

fdµ.

Let (X1,B1, µ1) and (X2,B2, µ2) be two regular probability spaces in the sense of Definition A.4 with measure
preserving maps

φ1 : (X1,B1, µ1)→ (Y,D , ν), φ2 : (X2,B2, µ2)→ (Y,D , ν).

Applying Theorem A.5, we get the two disintegrations y 7→ µ1,y and y 7→ µ2,y. Thus, we can define

P (A) =
∫
Y

µ1,y × µ2,y(A)dν(y) (A.5)

on the measurable space (X1 ×X2,B1 ×B2). Using the monotone convergence theorem it is easy to see that
P defines a measure on (X1 ×X2,B1 ×B2) which is a probability measure as

P (X1 ×X2) =
∫
Y

dν = 1.

Moreover, we have the following lemma.
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Lemma A.6. The measures µ1 and µ2 are the pushforward measures of P under π1 and π2, respectively.

Proof. For A1 ∈ B1 we have

(π1)#P (A1) =P (π−1
1 (A1))

=
∫
Y

µ1,y × µ2,y(A1 ×X2)dν(y)

=
∫
Y

∫
X

1A1dµ1,ydν(y)

=
∫
X

1A1dµ1

=µ1(A1).

Here, we used property (ii) of Theorem A.5 in the fourth step. This shows (π1)#P = P1. Similarly, (π2)#P = P2
is proved.

Introducing the canonical projections π1 : X1 × X2 → X1 and π2 : X1 × X2 → X2 we have the following
situation

(X1 ×X2,B1 ×B2, P )

(X1,B1, µ1) (X2,B2, µ2)

(Y,D , ν)

π1 π2

φ1 φ2

The following Proposition is proved as Proposition 5.11 on page 112 in [5].

Proposition A.7. The above diagram is commutative, i.e. φ1 ◦ π1 = φ2 ◦ π2.

Combining the previous results and observing that a Brownian motion defines a homomorphism to the space
of real-valued continuous functions with an appropriate σ-algebra we get

Theorem A.8. Let (Ω1,Σ1, P1) and (Ω2,Σ2, P2) be two regular probability spaces in the sense of Definition A.4
and B1 : Ω1 × [0,∞)→ R, B2 : Ω2 × [0,∞)→ R be two standard Brownian motions over the probability spaces
Ω1, Ω2 respectively. Then there exists a probability space (Ω,Σ, P ) and two measurable functions π1 : Ω → Ω1
and π2 : Ω→ Ω2 such that

(i) P1 is the pushforward measure of P under π1, i.e. (π1)#P = P1,

(ii) P2 is the pushforward measure of P under π2, i.e. (π2)#P = P2,

(iii) For P -almost every ω ∈ Ω one has B1(π1(ω), t) = B2(π2(ω), t) for all t ∈ [0,∞).

The proof follows the proof of Theorem 10 in [4].

Proof. The goal is to define an appropriate measure space (Y,D , ν) such that the Brownian motions B1 and B2
induce measure preserving maps (Ω1,Σ1, P1)→ (Y,D , ν) and (Ω2,Σ2, P2)→ (Y,D , ν) and apply Theorem A.5.
It is natural to take Y = C([0,∞),R), the space of continuous function from [0,∞) to R, with the σ-algebra

D generated by the sets

{ω ∈ C([0,∞),R); k ∈ N, F1, . . . , Fk ∈ B(R), 0 < t1 < . . . < tk, ω(t1) ∈ F1, . . . , ω(tk) ∈ Fk} (A.6)

and the unique probability measure ν which fulfills

ν(δt1 ∈ F1, . . . , δtk ∈ Fk) =
∫
F1×...×Fk

γ1
0,
√
t1

(x1) . . . γ1
xk−1,

√
tk−tk−1

(xk)dx1 . . . dxk (A.7)

for 0 < t1 < . . . < tk, F1, . . . , Fk ∈ B(R) and δt : C([0,∞),R)→ R, ω 7→ ω(t).

16



For i = 1, 2 consider the maps

φi : (Ωi,Σi, Pi)→ (Y,D , ν), ω 7→ Bi(·)(ω).

Clearly, Bi(·)(ω) ∈ Y for all ω ∈ Ωi. Moreover, let A be a set as in (A.6). Then

φ−1
i (A) = {Bi(t1) ∈ F1, . . . , Bi(tk) ∈ Fk} ,

i.e. φi is measurable. Thus, (φi)#Pi and ν define two probability measures on Y . By properties of the Brownian
motion and (A.7) they coincide on the sets in (A.6) and therefore φi is a measure preserving map for i = 1, 2
by an easy application of Dynkin’s Theorem.
Thus, we can apply above considerations and define Ω ..= Ω1×Ω2, Σ ..= Σ1×Σ2 and P as in (A.5). Moreover,

let π1 and π2 be the canonical projections onto the first and second component of Ω, respectively. Then Lemma
A.6 implies (i) and (ii) of the Theorem and Proposition A.7 yields (iii). This concludes the proof of Theorem
A.8.
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