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In this talk we present some results about how the Vlasov equation can
be seen to arise as a mean field limit of a system of interacting particles.
This is understood well for nice enough interaction potentials, and we re-
express known results using notions from probability theory and optimal
transportation. The situation gets more complicated as soon as one considers
interactions which become singular at small distances such as the Coulomb
force or the gravitational force, i.e. a force of the form 1/|x|α with α = d− 1
and d the dimension of the system. We explain key ideas in the proof of the
mean field limit and the propagation of chaos in the case α < d− 1 but very
close to d−1. This involves a control on the trajectories of particles that get
very close to each other in position-velocity space.
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1 Introduction
In this talk we will take a closer look at the Vlasov-Poisson equation, which is a type of
mean field evolution PDE. It is given by

∂tf(t, x, v) + v · ∇xf(t, x, v) + E(t, x) · ∇vf(t, x, v) = 0, x, v ∈ Rd, t ∈ R
E(t, x) =

∫
Rd ρ(t, y)F (x− y) dy

ρ(t, x) =
∫
Rd f(t, x, v) dv.

(1)

The unknown f = f(t, x, v) is the number density at time t of particles located at
position x with velocity v and F (x) is the interaction force. We shall be primarily
interested in how the Vlasov equation (1) can be derived as the limit of an N -particle
system. Denote by Xi, Vi ∈ Rd the position and velocity of the i-th particle. Assuming
a two-body interaction, the system of ordinary differential equations governing the time
evolution of the system is{dXi

dt = Vi, i = 1, . . . , N
dVi
dt = 1

N

∑
j 6=i F (Xi −Xj).

(2)

This is just Newton’s second law, with a rescaled force term. This is referred to as mean
field scaling and comes from the following fact. Let us generalize the system of ODEs a
bit and start from an unscaled system

dẑi
dt =

∑
j 6=i

K(ẑi, ẑj)

for ẑi ∈ Rd and K : Rd × Rd → Rd the interaction kernel. We want to choose a time
variable t̂ such that dẑi

dt = O(1) for all i as N → ∞. Assuming that each force term
K(ẑi, ẑj) = O(1), we set t̂ = t

N . Then we have

dẑi
dt̂

= 1
N

∑
j 6=i

K(ẑi, ẑj).

If we consider now this equation as our starting point and forget about the hats, we
arrive at our desired mean field scaling.
The key idea for the mean field limit is the expected convergence of

1
N

∑
j 6=i

K(zi, zj)→
∫
Rd
K(zi, z′)f(t, dz′)

as N →∞ when the zi are distributed under the probability measure f(t, dz′) (in some
sense). Then we could replace the system of ODEs by

dz
dt =

∫
Rd
K(z(t), z′)f(t, dz′)
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which is the equation of characteristics of the mean field PDE

∂tf + divz(fKf) = 0,

where Kf(t, z) :=
∫
Rd K(z, z′)f(t, dz′). This equation is to be understood in the sense

of distributions, since f is a priori only a Borel probability measure:

d
dt

∫
Rd
φ(z)f(t, dz) =

∫
Rd
Kf(t, z) · ∇φ(z)f(t, dz)

for each test function φ ∈ C1
b (Rd). To return from this general description to the Vlasov

equation (1) given above, for z = (x, v) ∈ R6 set

K(z, z′) = K(x, v, x′, v′) = (v − v′, F (x− x′)).

The question of the mean field limit is interesting mainly for two reasons. Firstly,
one would gain a justification of the validity of the Vlasov equation and secondly, it
would have practical applications for numerical simulations: Knowing that the discrete
ODE model will converge to the continuous PDE we can simulate the ODE model with
much fewer particles than the actual system possesses, dictated of course by the rate of
convergence obtained.
In section 2, we present a general formalism to describe mean field limits that is

valid for any mean field PDE with smooth (nice enough) interaction force. We derive a
stability estimate for two different solutions of the mean field PDE and this enables us
to derive the mean field limit which was formally described above.
In section 3 we look at more singular interactions that are related more closely to

physically relevant interactions such as the Coulomb/gravitational force.

2 A general formalism for mean field limits
2.1 Regularity
For each N -tuple ZN = (z1, . . . , zN ) ∈ (Rd)N we define the empirical measure

µZN := 1
N

N∑
k=1

δzk ,

where δzk is the Dirac measure at position zk.
Given a function K ∈ C1(Rd × Rd,Rd), we define the integral operator K by acting

on the probability measure f(t, dz) as

Kf(t, z) :=
∫
Rd
K(z, z′)f(t, dz′).

Theorem 1 Assume that the interaction kernel K ∈ C1(Rd × Rd,Rd) satisfies

1. K is skew-symmetric, i.e. K(z, z′) +K(z′, z) = 0 for all z, z′ ∈ Rd,
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2. K has bounded partial derivatives of order 1, i.e. there exists a constant L ≥ 0
such that supz′ |∇zK(z, z′)| ≤ L and supz |∇z′K(z, z′)| ≤ L.

Then we have

1. for each N ≥ 1 and each N -tuple Zin
N = (zin

1 , . . . , z
in
N ), the Cauchy problem for the

N -particle ODE system{
żi(t) = 1

N

∑N
j=1K(zi(t), zj(t)) i = 1, . . . , N,

zi(0) = zin
i

(3)

has a unique solution of class C1 on R denoted by t 7→ ZN (t) = (z1(t), . . . , zN (t)) =:
TtZ

in
N ,

2. the empirical measure f(t, dz) = µTtZin
N

is a weak solution of the Cauchy problem
for the mean field PDE {

∂tf + divz(fKf) = 0,
f |t=0 = f in.

(4)

Recall the definition of the push-forward measure. For two measurable spaces (X,A)
and (Y,B), a measurable map Φ : (X,A) → (Y,B) and a measure m on (X,A), the
push-forward measure of m under Φ is the measure on (Y,B) defined by

Φ#m(B) := m(Φ−1(B)) for all B ∈ B.

Theorem 2 Under the assumptions on K from theorem 1, for each ζ in ∈ Rd and each
Borel probability measure µin ∈ P1(Rd), there exists a unique solution denoted t 7→
Z(t, ζ in, µin) of class C1 of the problem

∂tZ(t, ζ in, µin) = Kµ(t)(Z(t, ζ in, µin)),
µ(t) = Z(t, ·, µin)#µin,

Z(0, ζ in, µin) = ζ in.

We call the solution of theorem 2 the mean field characteristic flow. It is related to
the flow Tt associated to the N -particle ODE system via the following

Proposition 3 Under the same assumptions as in theorem 1, we have for each Zin
N =

(zin
1 , . . . , z

in
N ) that the solution TtZin

N = (z1(t), . . . , zN (t)) of the N -body problem and the
mean field characteristic flow Z(t, ζ in, µin) satisfy

zi(t) = Z(t, zin
i , µZin

N
), i = 1, . . . , N,

for all t ∈ R.
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2.2 Dobrushin’s stability estimate
The Wasserstein (or Monge-Kantorovich) distance of order r ≥ 1 between two (Borel)
probability measures with r-th moments µ, ν ∈ Pr(Rd) is defined by

Wr(µ, ν) = inf
π∈Π(µ,ν)

(∫
Rd×Rd

|x− y|rπ(dx,dy)
)1/r

.

Here, Π(µ, ν) is the space of couplings of µ and ν, i.e. it is the set of probability measures
π on Rd × Rd which have first marginal µ and second marginal ν. In the special case
r = 1 it is actually true that

W1(µ, ν) = sup
Lip(φ)≤1

∣∣∣∣∫
Rd
φ(z)µ(dz)−

∫
Rd
φ(z)ν(dz)

∣∣∣∣ ,
where Lip(φ) denotes the Lipschitz constant of φ and the supremum is taken over all
Lipschitz functions on Rd. This fact comes from a duality argument in optimization.

Theorem 4 (Dobrushin [1]) Under the assumptions of theorem 1, for µin
1 , µ

in
2 ∈ P1(Rd)

and t ∈ R, we let

µ1(t) = Z(t, ·, µin
1 )#µin

1 , µ2(t) = Z(t, ·, µin
2 )#µin

2 .

Then for all t ∈ R, we have

W1(µ1(t), µ2(t)) ≤ e2L|t|W1(µin
1 , µ

in
2 ).

Theorem 5 (Mean field limit) Assume that the interaction kernel K ∈ C1(Rd ×
Rd,Rd) satisfies the assumptions of theorem 1. Let f in be a probability density on Rd
such that ∫

Rd
|z|f in(z) dz <∞.

Then the Cauchy problem for the mean field PDE (4) with initial data f in has a unique
weak solution f ∈ C(R, L1(Rd)). For each N ≥ 1, let Z(N) = (zin

1,N , . . . , z
in
N,N ) ∈ (Rd)N

be such that the empirical measure µz(N) satisfies (where Ld denotes Lebesgue measure
in d dimensions)

W1(µZ(N), f
inLd)→ 0 as N →∞. (5)

Let t 7→ TtZ(N) = (z1,N (t), . . . , zN,N (t)) ∈ (Rd)N be the solution of the N -particle ODE
(3) with initial data Z(N). Then

µTtZ(N) → f(t, ·)Ld as N →∞

in the weak topology of probability measures, with convergence rate

W1(µTtZ(N), f(t, ·)Ld) ≤ e2L|t|W1(µZ(N), f
inLd)→ 0 as N →∞

for each t ∈ R.
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Take a probability density f in on Rd that satisfies∫
Rd
|z|2f in(z) dz <∞.

Let Ω = (Rd)N, i.e. it is the set of sequences of points in Rd indexed by N. Let

F =
〈∏
n≥1

Bn

〉

be the σ-algebra on Ω generated by cylinders, Bn are Borel sets in Rd where Bn = Rd
for all but finitely many n. The measurable space (Ω,F) is then endowed with the
probability measure P = (f in)⊗∞, which acts on the cylinder sets as

P

∏
n≥1

Bn

 =
∏
n≥1

f in(Bn).

The condition (5) is guaranteed by the following

Theorem 6 For each zin = (zin
k )k≥1 ∈ Ω, let Zin

N = (zin
1 , . . . , z

in
N ). Then

W1(µZin
N
, f inLd)→ 0 as N →∞

for P-almost every zin ∈ Ω.

Lemma 7 ([7]) The Wasserstein distance of order one metrizes the topology of weak
convergence. This means for a sequence (µn)n≥1 of probability measures in P1(Rd) and
µ ∈ P1(Rd) the two following statements are equivalent:

1. W1(µn, µ)→ 0 as n→∞,

2. µn → µ in weak sense as n→∞ and the “tightness condition”

sup
n

∫
|z|≥R

|z|µn(dz)→ 0 as R→∞

holds.

2.3 BBGKY hierarchy, propagation of chaos
We define the space of symmetric probability measures on the N -particle phase space
by

Psym((Rd)N ) = {P ∈ P((Rd)N ) : Sσ#P = P for all σ ∈ SN},

where for a permutation σ the transformation Sσ on (Rd)N is defined by

Sσ(z1, . . . , zN ) = (zσ(1), . . . , zσ(N)).
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For each N ∈ N, each PN ∈ Psym((Rd)N ) and each k = 1, . . . , N , we define the
k-particle marginal PN :k ∈ Psym((Rd)k) by the formula∫

(Rd)k)
φ(z1, . . . , zk)PN :k(dz1 . . . dzk) =

∫
(Rd)N

φ(z1, . . . , zk)PN (dz1 . . . dzN )

for test functions φ ∈ Cb((Rd)k).
Now consider an N -particle symmetric probability measure F in

N ∈ Psym((Rd)N ) and
define its time evolution via the push-forward unter the flow associated to the N -particle
ODE (3),

FN (t) := Tt#F in
N , t ∈ R.

Then FN (t) is the unique weak solution in C(R,w-P((Rd)N )) of the Cauchy problem for
the N -particle Liouville equation{

∂tFN + 1
N

∑N
i,j=1 divzi(FNK(zi, zj)) = 0, z1, . . . , zN ∈ Rd, t ∈ R,

FN |t=0 = F in
N .

(6)

Now it is important to notice that the symmetry condition on F in
N is being propagated

by the flow of the N -particle Liouville equation.

Theorem 8 Assume K ∈ C1(Rd × Rd,Rd) satisfies the assumptions of theorem 1 and
let F in

N ∈ P1,sym((Rd)N ) with time evolution FN (t) = Tt#F in
N for all t ∈ R. The sequence

of marginal distributions FN :j of FN for j = 1, . . . , N is a weak solution of the string of
equations 

∂tFN :1 + N−1
N divz1 [K(z1, z2)FN :2]:1 = 0,

∂tFN :j + N−j
N

∑j
l=1 divzl [K(zl, zj+1)FN :j+1]:j

+ 1
N

∑j
k,l=1 divzl(K(zl, zk)FN :j) = 0, j = 2, . . . N − 1,

∂tFN :N + 1
N

∑N
k,l=1 divzl(K(zl, zk)FN :N ) = 0

with initial conditions FN :j |t=0 = F in
N :j, j = 1, . . . , N .

The string of equations in theorem 8 is called the BBGKY hierarchy. It is equivalent
to the N -particle Liouville equation (6) and the advantage of deriving it lies in the
following argument. Formally, we want to pass to the limit N → ∞ in (6) but this
poses the question as to what the limiting object will be, as it is a symmetric function
of infinitely many variables. If we take the BBKGY hierarchy and pass for a fixed j to
the limit in FN :j , the limit function Fj (assuming it exists) will be a priori a symmetric
function of j variables. For the middle term in the equations, we have for N →∞

N − j
N

∫
Rd
K(zl, zj+1)FN :j+1(dzj+1)→

∫
Rd
K(zl, zj+1)Fj+1(dzj+1)

while for the last term
1
N
K(zl, zk)FN :j → 0.
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Formally, we have that the limit function satisfies

∂tFj +
j∑
l=1

divzl
∫
Rd
K(zl, zj+1)Fj+1(dzj+1) = 0, j ≥ 1. (7)

This string of equations is called the (infinite) Vlasov hierarchy and it looks already
quite similar to the mean field PDE, which was our motivation in deriving it. The
precise statement is given in the following

Proposition 9 Under the assumptions of theorem 1 on K, let f in be a smooth (at least
C1) probability density on Rd with finite first moment, i.e.∫

Rd
|z|f in(z) dz <∞.

Assume that the Cauchy problem for the mean field equation (4) with initial data f in has
a classical (at least C1) solution f . Set fj(t, ·) = f(t, ·)⊗j which means

fj(t, z1, . . . , zj) =
j∏

k=1
f(t, zk)

for each t ∈ R and z1, . . . , zj ∈ Rd. Then the sequence (fj)j≥1 is a solution of the infinite
mean field hierarchy

∂tfj(z1, . . . , zj) +
j∑
l=1

divzl
∫
Rd
K(zl, zj+1)fj+1(z1, . . . , zj+1) dzj+1 = 0, j ≥ 1.

Now we see how the method of hierarchies enables us to prove the mean field limit.
Choosing factorized initial data for theN -particle Liouville equation, i.e. for a probability
density f in on Rd with finite first order moment, we look at the N -particle Liouville
equation (6) with this initial data. Assume we can prove FN :j → Fj (in some sense) for
each j ≥ 1, where Fj is a solution of the infinite hierarchy (7) and that we can prove the
uniqueness of this solution.
Now let f be a solution of the mean field PDE (4) with initial data f in. From propo-

sition 9 we know that fj := f⊗j is a solution of the infinite mean field hierarchy (7) with
initial data (f in)⊗j and (assuming uniqueness) we thus have

FN :j → Fj = f⊗j as N →∞, j ≥ 1.

For j = 1 in particular, we have
FN :1 → f,

which says that the first marginal of the solution of the N -particle Liouville equation
with factorized initial data converges to the solution of the mean field PDE in the large
N limit.
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Now we characterize the convergence of the marginals. Let p be a probability measure
on Rd. A sequence PN of symmetric N -particle probability measures on (Rd)N is said
to be p-chaotic if

PN :j → p⊗j weakly in P((Rd)j)

as N →∞ for all j ≥ 1 fixed. This convergence can be characterized using the empirical
measure.

Theorem 10 Let p ∈ P(Rd) and PN ∈ Psym((Rd)N ). Then the two following state-
ments are equivalent:

1. PN is p-chaotic;

2. for each φ ∈ Cb(Rd) and each ε > 0, we have

PN ({ZN ∈ (Rd)N : |〈µZN − p, φ〉| ≥ ε})→ 0

as N →∞, where µZN is the empirical measure at the coordinates ZN .

Theorem 11 Under assumptions on K of theorem 1, take a probability density f in on
Rd such that ∫

Rd
|z|d+5f in(z) dz <∞.

Let F in
N = (f inLd)⊗N be the initial data to the N -particle Liouville equation (6) and

denote its solution by FN (t) = Tt#F in
N . Then we have, for each j ≥ 1 that FN is

f(t, ·)Ld-chaotic, i.e.

FN :j(t)→ (f(t, ·)Ld)⊗j weakly in P((Rd)j)

as N → ∞, where the probability density f(t, ·) is the solution of the mean field PDE
(4).

Theorem 12 (Horowitz-Karandikar [5]) For all p ∈ P(Rd) such that a := 〈p, |z|d+5〉 <
∞ we have that ∫

(Rd)N
W2(µZN , p)

2p⊗N (dZN ) ≤ C(a, d)2

N2/(d+4) ,

where the constant C(a, d) depends on the constant a and the dimension d.

Theorem 13 Under the assumptions of theorem 1 on K, let F in
N ∈ P1,sym((Rd)N ) and

FN (t) its time evolution via the N -particle Liouville equation (6). Then∫
(Rd)N

µ⊗m
TtZin

N
F in
N (dZin

N ) = N !
(N −m)!Nm

FN :m(t) +RN,m(t),

where RN,m(t) is a positive Radon measure on (Rd)m with total mass

〈RN,m(t), 1〉 = 1− N !
(N −m)!Nm

≤ m(m− 1)
2N .
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Furthermore, assuming the initial data is factorized, F in
N = (f inLd)⊗N , with

a =
∫
Rd
|z|d+5f in(z) dz <∞,

we have
W1(FN :1(t), f(t)Ld) ≤ C(a, d) e2L|t|

N1/(d+4) .

Consider the notion of statistical solution. For the Cauchy problem of the ODE{
ẋ(t) = v(x(t)),
x(0) = x0

we have existence of a global solution flow X if the vector field v is Lipschitz by the
standard theorems such that t 7→ X(t, x0) is a solution to the ODE with initial condition
X(0, x0) = x0. Now suppose instead of the initial condition x0 we are given a probability
distribution µ0 set on the space of initial data Rd. Then define µ(t) = X(t, ·)#µ0 for
t ∈ R. By the method of characteristics, we have that µ(t) solves the Cauchy problem{

∂tµ(t) + div(µ(t)v) = 0,
µ(0) = µ0.

In our case, the initial data is set on the space of probability measures with finite first
order moments on Rd, P1(Rd). So the notion of statistical solution would be to take
initial data ν0 from the probability measures on P1(Rd). We define the one-parameter
group Gtf

in = f(t, ·). Then the time evolution of ν0 is analogously defined as ν(t) =
Gt#ν0. To determine the nature of ν(t), we write∫

P1(Rd)
p⊗jν(t, dp) =

∫
P1(Rd)

(Gtp)⊗jν0(dp),

where we would like to test for appropriate continuous functions F on some functional
space. Certainly, polynomials should be contained in such a class. Thus we consider
monomials of degree k on P(Rd):

Mk,φ(p) :=
∫

(Rd)
φ(z1, . . . , zk)p(dz1) . . . p(dzk) = 〈p⊗k, φ〉.

The equality above becomes, if we specialize to F = Mj,φ∫
P1(Rd)

p⊗jν(t, dp) =
∫
P1(Rd)

(Gtp)⊗jν0(dp).

Defining
Fj(t) :=

∫
P1(Rd)

(Gtp)⊗jν0(dp), j ≥ 1,
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we have that Fj is a solution of the infinite mean field hierarchy (7): Since (Gtp)⊗j is a
solution of (7) and the hierarchy is a sequence of linear equations it follows that Fj is
also a solution as it is an average under ν0 of solutions.
Let Ω = (Rd)N equipped with product topology and associated Borel algebra B(Ω).

Denote by p⊗∞ the probability measure defined by

p⊗∞

∏
k≥1

Ek

 =
∏
k≥1

p(Ek)

for each sequence Ek of Borel subsets of Rd such that Ek = Rd for all but finitely many
k. Note (p⊗∞):j = p⊗j , j ≥ 1. Define

F(t) :=
∫
P1(Rd)

p⊗∞ν(t, dp) =
∫
P1(Rd)

(Gtp)⊗∞ν0(dp),

then for each j ≥ 1 we have F(t):j = Fj(t) and F(t):j is a solution of the infinite mean
field hierarchy. The natural extension regarding symmetric probability measures on Ω
is defined by the condition

Uσ#µ = µ, Uσ(z1, z2, . . . ) = (zσ(1), . . . , zσ(N), zN+1, . . . ).

We define a map t 7→ P(t) to be a measure-valued solution of the mean field hierarchy
if and only if

∂t〈P(t), ψj〉 = 〈P(t),
j∑
i=1

K(zi, zj+1 · ∇ziψj〉

for t ∈ I ⊂ R, where I is an interval and ψj ∈ C1
0 ((Rd)j), j ≥ 1. With this definition,

t 7→ F(t) ∈ Psym(Ω) defined before is a measure-valued solution of the infinite mean field
hierarchy with initial condition

F(0) =
∫
P1(Rd)

p⊗jν0(dp).

Two questions come to mind:

1. Are these measure-valued solutions uniquely determined by the initial data?

2. Are all measure-valued solutions of the mean field hierarchy defined by statistical
solutions of the mean field PDE?

The answers are given by the two following theorems.

Theorem 14 (Hewitt-Savage [4]) For each P ∈ Psym(Ω), there exists a unique prob-
ability measure π on P(Rd) such that

P =
∫
P(Rd)

p⊗∞π(dp).
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Theorem 15 (Spohn [6]) Under the assumptions of theorem 1 on the interaction ker-
nel K, for each probability measure νin on P1(Rd), the only measure-valued solution of
the Vlasov hierarchy with initial data

Fin =
∫
P1(Rd)

p⊗∞νin(dp)

is
F(t) =

∫
P1(Rd)

(Gtp)⊗∞νin(dp), t ∈ R.

For P ∈ P1,sym((Rd)M ) and Q ∈ P1,sym((Rd)N ) we define a variant of the Wasserstein
distance by

W1(P,Q) = inf
ρ∈Π(P,Q)

∫
RdM×RdN

W1(µXM , µYN )ρ(dXM , dYN ).

In the same setting as Spohn’s theorem, we can find a stability estimate for solutions of
the N -particle Liouville equation with statistical initial data:

Theorem 16 (Golse-Mouhot-Ricci [2]) For M,N ≥ 1 let P in
M ∈ P1,sym((Rd)M ) and

Qin
N ∈ P1,sym((Rd)N ) and assume that the interaction kernel satisfies the assumptions of

theorem 1. Denote by PM (t) and QN (t) the solutions to the M - and N -particle Liouville
equations with initial data P in

M and Qin
N respectively. Then

1. For each t ∈ R, one has

DMK,1(PM (t), QN (t)) ≤ e2L|t|DMK,1(P in
M , Q

in
N ).

2. For each t ∈ R, m,M,N ∈ N such that M,N ≥ m and for each bounded Lipschitz
continuous function φm on (Rd)m, one has

|〈PM :m(t)−QN :m(t), φm〉|

≤ m e2L|t| Lip(φm)DMK,1(P in
M , Q

in
N ) +m(m− 1)‖φm‖∞

( 1
M

+ 1
N

)
.

3 The case of singular interaction kernels: Coulomb and
gravitational force

3.1 Main example: Coulomb/gravitational force
A well-known example for the interaction force is the Coulomb or the graviational force
which is given by

F (x) = C
x

|x|d
, d 6= 2.
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In two dimensions, the force is logarithmic in the distance, F (x) = C log(|x|). This
comes from the fact that the Coulomb force is the negative gradient of the Coulomb
potential which in turn is defined as the Green’s function of the Laplacian:

V (x) = C
1

|x|d−2 , −∆V = δ.

For positive C, this corresponds to the Coulomb force of charges with equal sign and
for negative C it corresponds to gravitational interaction. The particles considered in
this system could thus be ions or electrons in a plasma or stars (or clusters of stars,
galaxies, . . . ). As the number of particles in such systems usually is very large (109 to
1025), solving (2) numerically is already challenging. Notice that F (x) is singular at the
origin.
The singularity at the origin poses a problem if one attempts to obtain the same results

as in section 2 as the Gronwall estimates are no longer as easy to establish. Instead we
have to work with the structure of the equation itself and look at the trajectories of
particles that get close to each other in position-velocity space.

3.2 Mean field limit
We want to quantify the strength of the singularity in the force. Therefore we define two
different conditions for “weakly” and “strongly” singular forces. F is weakly singular if
it satisfies the condition (Sα) for 0 < α < 1:

(Sα) ∃C > 0 ∀x ∈ Rd\{0} |F (x)| ≤ C

|x|α
, |∇F (x)| ≤ C

|x|α+1 .

Strongly singular forces will be cut off at the origin. We say that F satisfies (Sαm) if

1. F satisfies (Sα) for 1 ≤ α < d− 1,

2. For |x| ≥ N−m we have FN (x) = F (x),

3. For |x| ≤ N−m we have |FN (x)| ≤ Nmα.

Theorem 17 (Hauray-Jabin [3]) Assume the interaction force satisfies an (Sα) con-
dition for α < 1 and the initial data f in is such that the Vlasov equation has a unique
solution f(t). Assume further that the initial conditions Zin

N satisfy some compatibility
conditions and denote ZN (t) the unique solution to the ODE system. Then for N ≥ ecT

W1(µZN (t), f(t)) ≤ eCt
(
W1(µZin

N
, f in) + 2N−

γ
2d
)
,

where γ ∈ (0, 1) and t ∈ [0, T ]; c and C denote positive constants.

The exact compatibility conditions on the initial data Z in
N are

1. The local density does not exceed a certain bound,

sup
z∈R2d

NγµZin
N

(B2d(z,N−γ/(2d))) ≤ C

13



2. The coordinates are contained in a ball of finite radius R > 0,

suppµZin
N
⊂ B2d(0, R).

3. The initial interparticle distance is bounded below,

inf
i 6=j
|zin
i − zin

j | ≥ N−γ(1+r)/(2d).

Here, we want to give some ideas for the proof of theorem 17:

• Use the Wasserstein distance of order ∞:

W∞(µ, ν) = inf
π∈Π(µ,ν)

π-ess sup |x− y|

Since W1 ≤ W∞, a control on the infinite Wasserstein distance will imply control
on the one Wasserstein distance

• Introduce a scale ε(N) = N−γ/(2d) for γ ∈ (0, 1). Notice that ε is larger than the
average inter-particle distance of order N−1/(2d)

• Use this scale to distinguish contributions from three different domains

• Define the minimal inter-particle distance

dN (t) = inf
i 6=j
|zi(t)− zj(t)|.

Then we have to distinguish contributions from three different domains (compare
figure 1). They are

1. Particles that are sufficiently far away from each other in position space

2. Particles that are ε-close in position space but have sufficiently different velocities

3. Particles that are ε-close in R2d

Carefully summing up contributions from the different domains gives two differential
inequalities (for rescaled versions W̃∞ and d̃n of W∞ and dN that are of order one)

W̃∞(t)− W̃∞(t− ε)
ε

≤ C(W̃∞(t) + Rest),

d̃N (t)− d̃N (t− ε)
ε

≥ −C(d̃N (t) + Rest).

The terms in “Rest” come with small weights εβ for positive β such that these inequalities
provide uniform bounds until a critical time Tε with Tε →∞ as ε→ 0.
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Figure 1: Imagine one particle sitting at the origin and the coordinates in this drawing
give the distance to another particle. Then we distinguish contributions from
three different domains.

3.3 Propagation of chaos
Similarly as before, we can prove propagation of chaos from the deterministic mean
field limit. More delicate here: Need to show that the compatibility conditions on the
initial data are satisfied with large probability in the limit when the initial data is chosen
randomly with law (f in)⊗N . To conclude we use “large deviation bounds” from statistical
theory.
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