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Theorem (B. L. van der Waerden, 1927)
If we color Z with finitely many colors, then for any k ∈ N+ there
exists a monochromatic k-term arithmetic progression.

Definition. (a1, . . . , ak) ⊂ Z ordered k-tuple is called a k-term
arithmetic progression, if ai+1 − ai = d for all i = 1, . . . , k − 1.

Example

k = 1: trivial; k = 2: trivial, e. g. (6, 7), (8, 9), (10, 18), . . .
k = 3: non-trivial, e. g. (10, 15, 20); k = 5: (5, 9, 13, 17, 21).

Conjecture of P. Erdős & P. Turán (1936). True reason: at
least one of the color classes has positive upper density.
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Definition. The upper density δ(A) of a set A ⊆ Z is defined as

δ(A) ··= lim sup
n→∞

1
2n + 1 |A ∩ {−n,−n + 1, . . . , n − 1, n} |.

Conjecture of P. Erdős & P. Turán (1936). If A ⊆ Z, such that
δ(A) > 0 ⇒ A contains a k-term arithmetic progression for each k.

Theorem (K. F. Roth, 1953; E. Szemerédi, 1969 and 1975)
K. F. Roth: k = 3 (1953)

⇐= Goal of the talk.

E. Szemerédi: k = 4 (1969),

Roth: Fields Medal (1958)
Szemerédi: Abel Prize (2012)

⇒

Szemerédi’s Theorem
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A Surprising Connection
In 1977 H. Furstenberg gave a new proof via ergodic theory.

Additive Combinatorics connection⇐======⇒ Dynamical Systems

Outline of the Talk
1 Ergodic Theory. Basic concepts, notation, ergodic theorems,

ergodic decomposition.
2 Correspondence Principle. Converting problems in additive

combinatorics into problems about dynamical systems.

3 Weak Mixing & Compact Systems. Two extreme cases
(“pseudorandom” & “structured” systems).

4 Roth’s Theorem (k = 3). Putting the pieces together.

Remark. We mainly follow the exposition of the essay Szemerédi’s Theorem
via Ergodic Theory by Yufei Zhao (2011).

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem

A Surprising Connection
In 1977 H. Furstenberg gave a new proof via ergodic theory.

Additive Combinatorics connection⇐======⇒ Dynamical Systems

Outline of the Talk
1 Ergodic Theory. Basic concepts, notation, ergodic theorems,

ergodic decomposition.
2 Correspondence Principle. Converting problems in additive

combinatorics into problems about dynamical systems.

3 Weak Mixing & Compact Systems. Two extreme cases
(“pseudorandom” & “structured” systems).

4 Roth’s Theorem (k = 3). Putting the pieces together.

Remark. We mainly follow the exposition of the essay Szemerédi’s Theorem
via Ergodic Theory by Yufei Zhao (2011).

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem

A Surprising Connection
In 1977 H. Furstenberg gave a new proof via ergodic theory.

Additive Combinatorics connection⇐======⇒ Dynamical Systems

Outline of the Talk
1 Ergodic Theory. Basic concepts, notation, ergodic theorems,

ergodic decomposition.
2 Correspondence Principle. Converting problems in additive

combinatorics into problems about dynamical systems.

3 Weak Mixing & Compact Systems. Two extreme cases
(“pseudorandom” & “structured” systems).

4 Roth’s Theorem (k = 3). Putting the pieces together.

Remark. We mainly follow the exposition of the essay Szemerédi’s Theorem
via Ergodic Theory by Yufei Zhao (2011).

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem
Dynamical Systems
Basic Concepts

Ergodic Theorems
Ergodic Decomposition

Ergodic Theory I. – Dynamical Systems

Definition. X some set, T : X → X (shift map). The pair (X ,T )
is called a dynamical system. [We assume T is invertible.]
Question. What is the evolution of the system, as we iterate T?
Notation. T n ··= T ◦ · · · ◦ T ,T−n ··= T−1 ◦ · · · ◦ T−1 (n times).
T nE ··=

{
T n(x) | x ∈ E

}
; T nf (x) ··= f (T−n(x)), if f : X → X .

Topological Dynamical Systems
X is a compact metric space,
T : X → X is homeomorphism.
⇒ Topological Dynamics

In this talk: system ··=
measure preserving system.
All functions are measurable.

Measure Preserving Systems
(X ,X , µ,T ), where

X compact metric space,
X σ-algebra of measurable sets,
µ prob. measure: µ(X ) = 1,
T measure preserving: ∀E ∈ X ,
∀n ∈ Z : µ(T nE ) = µ(E ).

⇒ Ergodic Theory
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Ergodic Theory I. – Dynamical Systems
Definition. X some set, T : X → X (shift map). The pair (X ,T )
is called a dynamical system. [We assume T is invertible.]
Question. What is the evolution of the system, as we iterate T?
Notation. T n ··= T ◦ · · · ◦ T ,T−n ··= T−1 ◦ · · · ◦ T−1 (n times).
T nE ··=

{
T n(x) | x ∈ E

}
; T nf (x) ··= f (T−n(x)), if f : X → X .
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X is a compact metric space,
T : X → X is homeomorphism.
⇒ Topological Dynamics

In this talk: system ··=
measure preserving system.
All functions are measurable.

Measure Preserving Systems
(X ,X , µ,T ), where
X compact metric space,
X σ-algebra of measurable sets,
µ prob. measure: µ(X ) = 1,
T measure preserving: ∀E ∈ X ,
∀n ∈ Z : µ(T nE ) = µ(E ).

⇒ Ergodic Theory
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Ergodic Theory II. – Basic Concepts

Notation. XT ··=
{
E ∈ X | TE = E

}
(sub-σ-algebra of X ).

Definition I. A system X = (X ,X , µ,T ) is called ergodic if for all
E ∈ XT we have µ(E ) = 0 or µ(E ) = 1. ⇐⇒
Definition II. [...] ergodic if every f s. t. Tf = f is constant a. e.

L2 ··= L2(X ,X , µ) ··=
{
f : X → R |

∫
X |f |2 dµ <∞

}
/ ∼, where

f ∼ g ⇐⇒ f = g a. e. L2 is a Hilbert space; 〈f , g〉 ··=
∫

X fg dµ.

Y ⊆ X is a σ-alg. =⇒ L2(X ,Y, µ) ≤ L2(X ,X , µ) closed subspace.
The orthogonal projection E(·|Y) : L2(X ,X , µ)→ L2(X ,Y, µ) is
called conditional expectation.
Proposition. If a system X is ergodic, then E(f |XT ) = E(f ),
where E(f ) =

∫
X f dµ is the usual expectation.
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Ergodic Theory III. – Ergodic Theorems

“General Form” of Ergodic Theorems.

AvN(T nf ) ··=
1
N

N−1∑
n=0

T nf (N→∞)−−−−−−−→
some sense

E(f |XT )

Definition. AvN(T nf ): time average; E(f ): space average.

Proposition. If a system X is ergodic, then E(f |XT ) = E(f ).

Theorem (von Neumann mean ergodic theorem)
Let X = (X ,X , µ,T ) be a system, and f ∈ L2(X ,X , µ). Then

AvN(T nf ) −→ E(f |XT ) in L2

(⇒ also weakly)

as N →∞. If X is ergodic, then the limit equals E(f ).

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory
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Ergodic Theory IV. – Ergodic Decomposition

Goal. Decompose an arbitrary system into ergodic components.

Why? Ergodic theorems have simple forms for ergodic systems.

Theorem (Ergodic Decomposition)
Let (X ,X , µ,T ) be a system. Let E(X ) denote the set of ergodic
measures on X. There exists a probability measure ρµ on E(X )
such that

µ =
∫
E(X)

νρµ(dν).

Finite decomposition. µ =
∑n

i=1 αiµi , with
∑n

i=1 αi = 1, αi ≥ 0,
where the system (X ,X , µi ,T ) is ergodic for i = 1, . . . , n.
=⇒ We can assume ergodicity of systems in certain types of
proofs (including the proof of Szemerédi’s Theorem).

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory
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Correspondence Principle I. – Bernoulli Systems

Goal. Transforming Szemerédi’s Theorem into a problem in
ergodic theory.

=⇒ We define an equivalent problem for systems!
Bernoulli systems. X = P(Z) (the power set of Z), and
T : X → X is defined as T (B) = B + 1 =

{
b + 1 | b ∈ B ⊆ Z

}
.

X ∼= {0, 1}Z, which we equip with the product topology
(each {0, 1} is a discrete space).
By Tychonoff’s Theorem X is compact.
[Main reason for choosing {0, 1}Z instead of Z.]

X is also metrizable.
=⇒ We have a topological dynamical system.

Idea. Working in an appropriate subspace of X , we shall turn it
into a measure space via a T -invariant measure µ.  Goal.

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory
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X ∼= {0, 1}Z, which we equip with the product topology
(each {0, 1} is a discrete space).
By Tychonoff’s Theorem X is compact.
[Main reason for choosing {0, 1}Z instead of Z.]

X is also metrizable.
=⇒ We have a topological dynamical system.

Idea. Working in an appropriate subspace of X , we shall turn it
into a measure space via a T -invariant measure µ.  Goal.
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Correspondence Principle II. – Arithmetic Progressions

∃ arithmetic progressions
in A ⊆ Z with δ(A) > 0.

⇐⇒ ∃ arithmetic progressions
in E ⊆ X with µ(E ) > 0.

k-term arithmetic progression: x ,T nx ,T 2nx , . . . ,T (k−1)nx ∈ E .

Question. Given a system, E ∈ X with µ(E ) > 0, and k ∈ N+,
can we show E ∩ T nE ∩ · · · ∩ T (k−1)n 6= ∅ always for some n > 0?

We shall prove more: µ(E ∩T nE ∩ · · · ∩T (k−1)n) > 0. =⇒ This
would give an affirmative answer for the above question.
========================================================
Note. For k = 2, the claim is a trivial also in this setting.
(Also compare with: Poincaré Recurrence Theorem.)
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Correspondence Principle III. – Multiple Recurrence

Theorem (E. Szemerédi, 1975)
If A ⊆ Z, such that δ(A) > 0 =⇒ A contains a k-term arithmetic
progression for each k ∈ N+.

Correspondence

⇐
⇒ Principle

Multiple Recurrence Theorem (H. Furstenberg, 1977)
Let (X ,X , µ,T ) be a system, and k ∈ N+. Then for any E ∈ X
with µ(E ) > 0 there exists some n ∈ N+ such that

µ
(
E ∩ T nE ∩ · · · ∩ T (k−1)nE

)
> 0.
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Furstenberg =⇒ Szemerédi

Fix A ⊆ Z with δ(A) > 0.

Represent A! a ∈ {0, 1}Z in the
Bernoulli system ({0, 1}Z ,T ), where T ! (B 7→ B + 1).
Let X ··=

{
T na | n ∈ Z

}
, and E =

{
b ∈ X | b0 = 1

}
.

If there was a µ T -invariant measure on X , s. t. µ(E ) > 0, then by
Furstenberg we would get µ(E ∩T nE ∩ · · · ∩T (k−1)nE ) > 0 for some
n ∈ N+. =⇒ ∅ 6= E ∩T nE ∩ · · · ∩T (k−1)nE 3 T−ma for some m ∈ Z.

Existence. µN ··=
1

2N + 1

N∑
n=−N

δT na. Homework: The sequence

(µN)N∈N has some T -invariant weak limit µ, for which µ(E ) > 0.
[Use the assumption δ(A) > 0 & the Banach–Alaoglu Theorem.]

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem
Bernoulli Systems
Arithmetic Progressions

Multiple Recurrence
Proof of Correspondence

Furstenberg =⇒ Szemerédi

Fix A ⊆ Z with δ(A) > 0. Represent A! a ∈ {0, 1}Z in the
Bernoulli system ({0, 1}Z ,T ), where T ! (B 7→ B + 1).

Let X ··=
{
T na | n ∈ Z

}
, and E =

{
b ∈ X | b0 = 1

}
.

If there was a µ T -invariant measure on X , s. t. µ(E ) > 0, then by
Furstenberg we would get µ(E ∩T nE ∩ · · · ∩T (k−1)nE ) > 0 for some
n ∈ N+. =⇒ ∅ 6= E ∩T nE ∩ · · · ∩T (k−1)nE 3 T−ma for some m ∈ Z.

Existence. µN ··=
1

2N + 1

N∑
n=−N

δT na. Homework: The sequence

(µN)N∈N has some T -invariant weak limit µ, for which µ(E ) > 0.
[Use the assumption δ(A) > 0 & the Banach–Alaoglu Theorem.]

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem
Bernoulli Systems
Arithmetic Progressions

Multiple Recurrence
Proof of Correspondence

Furstenberg =⇒ Szemerédi

Fix A ⊆ Z with δ(A) > 0. Represent A! a ∈ {0, 1}Z in the
Bernoulli system ({0, 1}Z ,T ), where T ! (B 7→ B + 1).
Let X ··=

{
T na | n ∈ Z

}
, and E =

{
b ∈ X | b0 = 1

}
.

If there was a µ T -invariant measure on X , s. t. µ(E ) > 0, then by
Furstenberg we would get µ(E ∩T nE ∩ · · · ∩T (k−1)nE ) > 0 for some
n ∈ N+. =⇒ ∅ 6= E ∩T nE ∩ · · · ∩T (k−1)nE 3 T−ma for some m ∈ Z.

Existence. µN ··=
1

2N + 1

N∑
n=−N

δT na. Homework: The sequence

(µN)N∈N has some T -invariant weak limit µ, for which µ(E ) > 0.
[Use the assumption δ(A) > 0 & the Banach–Alaoglu Theorem.]

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem
Bernoulli Systems
Arithmetic Progressions

Multiple Recurrence
Proof of Correspondence

Furstenberg =⇒ Szemerédi

Fix A ⊆ Z with δ(A) > 0. Represent A! a ∈ {0, 1}Z in the
Bernoulli system ({0, 1}Z ,T ), where T ! (B 7→ B + 1).
Let X ··=

{
T na | n ∈ Z

}
, and E =

{
b ∈ X | b0 = 1

}
.

If there was a µ T -invariant measure on X , s. t. µ(E ) > 0, then by
Furstenberg we would get µ(E ∩T nE ∩ · · · ∩T (k−1)nE ) > 0 for some
n ∈ N+.

=⇒ ∅ 6= E ∩T nE ∩ · · · ∩T (k−1)nE 3 T−ma for some m ∈ Z.

Existence. µN ··=
1

2N + 1

N∑
n=−N

δT na. Homework: The sequence

(µN)N∈N has some T -invariant weak limit µ, for which µ(E ) > 0.
[Use the assumption δ(A) > 0 & the Banach–Alaoglu Theorem.]

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem
Bernoulli Systems
Arithmetic Progressions

Multiple Recurrence
Proof of Correspondence

Furstenberg =⇒ Szemerédi

Fix A ⊆ Z with δ(A) > 0. Represent A! a ∈ {0, 1}Z in the
Bernoulli system ({0, 1}Z ,T ), where T ! (B 7→ B + 1).
Let X ··=

{
T na | n ∈ Z

}
, and E =

{
b ∈ X | b0 = 1

}
.

If there was a µ T -invariant measure on X , s. t. µ(E ) > 0, then by
Furstenberg we would get µ(E ∩T nE ∩ · · · ∩T (k−1)nE ) > 0 for some
n ∈ N+. =⇒ ∅ 6= E ∩T nE ∩ · · · ∩T (k−1)nE 3 T−ma for some m ∈ Z.

Existence. µN ··=
1

2N + 1

N∑
n=−N

δT na. Homework: The sequence

(µN)N∈N has some T -invariant weak limit µ, for which µ(E ) > 0.
[Use the assumption δ(A) > 0 & the Banach–Alaoglu Theorem.]

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem
Bernoulli Systems
Arithmetic Progressions

Multiple Recurrence
Proof of Correspondence

Furstenberg =⇒ Szemerédi

Fix A ⊆ Z with δ(A) > 0. Represent A! a ∈ {0, 1}Z in the
Bernoulli system ({0, 1}Z ,T ), where T ! (B 7→ B + 1).
Let X ··=

{
T na | n ∈ Z

}
, and E =

{
b ∈ X | b0 = 1

}
.

If there was a µ T -invariant measure on X , s. t. µ(E ) > 0, then by
Furstenberg we would get µ(E ∩T nE ∩ · · · ∩T (k−1)nE ) > 0 for some
n ∈ N+. =⇒ ∅ 6= E ∩T nE ∩ · · · ∩T (k−1)nE 3 T−ma for some m ∈ Z.
Then (T−ma)0 = (T−n−ma)0 = · · · = (T−(k−1)n−ma)0 = 1.

Existence. µN ··=
1

2N + 1

N∑
n=−N

δT na. Homework: The sequence

(µN)N∈N has some T -invariant weak limit µ, for which µ(E ) > 0.
[Use the assumption δ(A) > 0 & the Banach–Alaoglu Theorem.]

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem
Bernoulli Systems
Arithmetic Progressions

Multiple Recurrence
Proof of Correspondence

Furstenberg =⇒ Szemerédi

Fix A ⊆ Z with δ(A) > 0. Represent A! a ∈ {0, 1}Z in the
Bernoulli system ({0, 1}Z ,T ), where T ! (B 7→ B + 1).
Let X ··=

{
T na | n ∈ Z

}
, and E =

{
b ∈ X | b0 = 1

}
.

If there was a µ T -invariant measure on X , s. t. µ(E ) > 0, then by
Furstenberg we would get µ(E ∩T nE ∩ · · · ∩T (k−1)nE ) > 0 for some
n ∈ N+. =⇒ ∅ 6= E ∩T nE ∩ · · · ∩T (k−1)nE 3 T−ma for some m ∈ Z.
Then (T−ma)0︸ ︷︷ ︸

m ∈ A
= (T−n−ma)0︸ ︷︷ ︸

n + m ∈ A
= · · · = (T−(k−1)n−ma)0︸ ︷︷ ︸

(k − 1)n + m ∈ A

= 1.

�

Existence. µN ··=
1

2N + 1

N∑
n=−N

δT na. Homework: The sequence

(µN)N∈N has some T -invariant weak limit µ, for which µ(E ) > 0.
[Use the assumption δ(A) > 0 & the Banach–Alaoglu Theorem.]

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem
Bernoulli Systems
Arithmetic Progressions

Multiple Recurrence
Proof of Correspondence

Furstenberg =⇒ Szemerédi

Fix A ⊆ Z with δ(A) > 0. Represent A! a ∈ {0, 1}Z in the
Bernoulli system ({0, 1}Z ,T ), where T ! (B 7→ B + 1).
Let X ··=

{
T na | n ∈ Z

}
, and E =

{
b ∈ X | b0 = 1

}
.

If there was a µ T -invariant measure on X , s. t. µ(E ) > 0, then by
Furstenberg we would get µ(E ∩T nE ∩ · · · ∩T (k−1)nE ) > 0 for some
n ∈ N+. =⇒ ∅ 6= E ∩T nE ∩ · · · ∩T (k−1)nE 3 T−ma for some m ∈ Z.
Then (T−ma)0︸ ︷︷ ︸

m ∈ A
= (T−n−ma)0︸ ︷︷ ︸

n + m ∈ A
= · · · = (T−(k−1)n−ma)0︸ ︷︷ ︸

(k − 1)n + m ∈ A

= 1.

�

Existence. µN ··=
1

2N + 1

N∑
n=−N

δT na.

Homework: The sequence

(µN)N∈N has some T -invariant weak limit µ, for which µ(E ) > 0.
[Use the assumption δ(A) > 0 & the Banach–Alaoglu Theorem.]

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem
Bernoulli Systems
Arithmetic Progressions

Multiple Recurrence
Proof of Correspondence

Furstenberg =⇒ Szemerédi

Fix A ⊆ Z with δ(A) > 0. Represent A! a ∈ {0, 1}Z in the
Bernoulli system ({0, 1}Z ,T ), where T ! (B 7→ B + 1).
Let X ··=

{
T na | n ∈ Z

}
, and E =

{
b ∈ X | b0 = 1

}
.

If there was a µ T -invariant measure on X , s. t. µ(E ) > 0, then by
Furstenberg we would get µ(E ∩T nE ∩ · · · ∩T (k−1)nE ) > 0 for some
n ∈ N+. =⇒ ∅ 6= E ∩T nE ∩ · · · ∩T (k−1)nE 3 T−ma for some m ∈ Z.
Then (T−ma)0︸ ︷︷ ︸

m ∈ A
= (T−n−ma)0︸ ︷︷ ︸

n + m ∈ A
= · · · = (T−(k−1)n−ma)0︸ ︷︷ ︸

(k − 1)n + m ∈ A

= 1.

�

Existence. µN ··=
1

2N + 1

N∑
n=−N

δT na. Homework: The sequence

(µN)N∈N has some T -invariant weak limit µ, for which µ(E ) > 0.
[Use the assumption δ(A) > 0 & the Banach–Alaoglu Theorem.]

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem

Szemerédi Systems (SZ Systems)

Multiple Recurrence Theorem (alternative form)
(X ,X , µ,T ) is a system, and k ∈ N+. ∀E ∈ X with µ(E ) > 0,

lim inf
N→∞

1
N

N∑
n=0

µ
(
E ∩ T nE ∩ · · · ∩ T (k−1)nE

)
> 0.

Definition. A system X = (X ,X , µ,T ) is SZ of level k if

lim inf
N→∞

1
N

N∑
n=0

∫
X
f · T nf · T 2nf · · ·T (k−1)nf dµ > 0,

whenever f ∈ L∞(X ), f ≥ 0, and E(f ) > 0. A system X is SZ if it
is SZ of every level. Ultimate Goal: Every system is SZ.
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Measure Preserving Systems
(according to the behavior of T )
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Ideas of the Proof – Two Extreme Cases

T is “chaotic”. If E ∈ X is any event in the probability space
(X ,X , µ), then E ,TE ,T 2E , . . . are all independent.

=⇒
µ
(
E ∩ T nE ∩ · · · ∩ T (k−1)nE

)
=
∏k−1

i=0 µ
(
T i ·nE

)
= µ(E )k > 0,

whenever µ(E ) > 0. X

T is periodic. For every E ∈ X there is an r ∈ N+ (may depend
on E ), such that T rE = E . =⇒
µ
(
E ∩ T nE ∩ · · · ∩ T (k−1)nE

)
= µ(E ) > 0, whenever r | n. X

========================================================
Problem. The above assumptions are very restrictive, and give
solution only for special cases. We need to weaken them!  

Weak mixing and Almost Periodic/Compact systems.
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Weak mixing and Almost Periodic/Compact systems.

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem

Ideas of the Proof – Two Extreme Cases

T is “chaotic”. If E ∈ X is any event in the probability space
(X ,X , µ), then E ,TE ,T 2E , . . . are all independent. =⇒
µ
(
E ∩ T nE ∩ · · · ∩ T (k−1)nE

)
=
∏k−1

i=0 µ
(
T i ·nE

)
= µ(E )k > 0,

whenever µ(E ) > 0. X

T is periodic. For every E ∈ X there is an r ∈ N+ (may depend
on E ), such that T rE = E .

=⇒
µ
(
E ∩ T nE ∩ · · · ∩ T (k−1)nE

)
= µ(E ) > 0, whenever r | n. X

========================================================
Problem. The above assumptions are very restrictive, and give
solution only for special cases. We need to weaken them!  

Weak mixing and Almost Periodic/Compact systems.

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem

Ideas of the Proof – Two Extreme Cases

T is “chaotic”. If E ∈ X is any event in the probability space
(X ,X , µ), then E ,TE ,T 2E , . . . are all independent. =⇒
µ
(
E ∩ T nE ∩ · · · ∩ T (k−1)nE

)
=
∏k−1

i=0 µ
(
T i ·nE

)
= µ(E )k > 0,

whenever µ(E ) > 0. X

T is periodic. For every E ∈ X there is an r ∈ N+ (may depend
on E ), such that T rE = E . =⇒
µ
(
E ∩ T nE ∩ · · · ∩ T (k−1)nE

)
= µ(E ) > 0, whenever r | n. X

========================================================

Problem. The above assumptions are very restrictive, and give
solution only for special cases. We need to weaken them!  

Weak mixing and Almost Periodic/Compact systems.

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem

Ideas of the Proof – Two Extreme Cases

T is “chaotic”. If E ∈ X is any event in the probability space
(X ,X , µ), then E ,TE ,T 2E , . . . are all independent. =⇒
µ
(
E ∩ T nE ∩ · · · ∩ T (k−1)nE

)
=
∏k−1

i=0 µ
(
T i ·nE

)
= µ(E )k > 0,

whenever µ(E ) > 0. X

T is periodic. For every E ∈ X there is an r ∈ N+ (may depend
on E ), such that T rE = E . =⇒
µ
(
E ∩ T nE ∩ · · · ∩ T (k−1)nE

)
= µ(E ) > 0, whenever r | n. X

========================================================
Problem. The above assumptions are very restrictive, and give
solution only for special cases. We need to weaken them!

 

Weak mixing and Almost Periodic/Compact systems.

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem

Ideas of the Proof – Two Extreme Cases

T is “chaotic”. If E ∈ X is any event in the probability space
(X ,X , µ), then E ,TE ,T 2E , . . . are all independent. =⇒
µ
(
E ∩ T nE ∩ · · · ∩ T (k−1)nE

)
=
∏k−1

i=0 µ
(
T i ·nE

)
= µ(E )k > 0,

whenever µ(E ) > 0. X

T is periodic. For every E ∈ X there is an r ∈ N+ (may depend
on E ), such that T rE = E . =⇒
µ
(
E ∩ T nE ∩ · · · ∩ T (k−1)nE

)
= µ(E ) > 0, whenever r | n. X

========================================================
Problem. The above assumptions are very restrictive, and give
solution only for special cases. We need to weaken them!  

Weak mixing and Almost Periodic/Compact systems.

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem

Ideas of the Proof – Types of Systems

Measure Preserving Systems
(according to the behavior of T )

"Chaotic" Periodic

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem

Ideas of the Proof – Types of Systems

Measure Preserving Systems
(according to the behavior of T )

"Chaotic" Periodic

Weak Mixing
("Pseudorandomness")

Almost Periodic / Compact
("Structure")

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory



Introduction
Ergodic Theory

Correspondence Principle

Ideas of the Proof
WM & AP

Roth’s Theorem
WM Systems & Functions
Cp. Systems & AP Functions

WM & AP Components

Weak Mixing Systems

Intuition. The events E ,TE ,T 2E , . . . are not independent, but E
and T nE become nearly uncorrelated in some sense as n→∞.

Definition. v ∈ V , (vn)n∈N ⊂ V normed. D-limn→∞ vn = v , if
for any ε > 0 we have δ

({
n ∈ N | ‖vn − v‖ > ε

})
= 0.

Definition. (X ,X , µ,T ) is weak mixing if for any A,B ∈ X

D-lim
n→∞

µ(T nA ∩ B) = µ(A)µ(B).
∣∣∣∣ D-lim

n→∞
〈T nf , g〉 = E(f )E(g).

Comparing weak mixing and ergodic systems:
Proposition. Weak mixing =⇒ ergodicity (but not vica versa).
Proposition. X w. m. ⇐⇒ X × X w. m. ⇐⇒ X × X ergodic.
Remark. X ergodic 6=⇒ X × X ergodic [irrational rotation of S1].
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Weak Mixing Functions

Definition. In a system (X ,X , µ,T ) a function f ∈ L2(X ) is
called weak mixing if D-limn→∞〈T nf , f 〉 = 0.

Intuition. f is w. m. if the “shifts” T nf eventually become
orthogonal to f (for which T displays “mixing” behavior).

Characterization of w. m. systems by w. m. functions:
A system (X ,X , µ,T ) is weak mixing ⇐⇒ every f ∈ L2(X ) with
E(f ) = 0 is weak mixing.

========================================================

Theorem. Every weak mixing system is SZ.
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Compact Systems & Almost Periodic Functions

Definition. A function f ∈ L2(X ) is almost periodic if for every
ε > 0, the set Sε =

{
n ∈ Z | ‖f − T nf ‖2 < ε

}
has bounded gaps,

which means ∃N > 0 : Sε ∩ [m,m + N] 6= ∅ for all m ∈ Z.

Definition. A system (X ,X , µ,T ) is called compact if every
f ∈ L2(X ) is almost periodic.

========================================================

Theorem. Every compact system is SZ.
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Weak Mixing & Almost Periodic Components

Notation. WM(X ) ··= {f ∈ L2(X ) | f is weak mixing}
Notation. AP(X ) ··= {f ∈ L2(X ) | f is almost periodic}

Key Proposition. For any system, L2(X ) = WM(X )⊕ AP(X )
as an orthogonal direct sum of Hilbert spaces.
Proof ingredients.

AP(X ) ⊆ L2(X ) is a closed T -invariant subspace.
f ∈WM(X )⇐⇒ 〈f , g〉 = 0 for all g ∈ AP(X ).

Message. Unless a system is completely “pseudorandom”
(!WM), it must contain some “structured” (! AP) piece.

Now we are ready to prove Roth’s Theorem.
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Proof

Roth’s Theorem – Statement of the Theorem

Theorem (Roth). Every subset A of Z with δ(A) > 0 contains a
3-term arithmetic progression.

⇐⇒

Theorem (Roth). Every system is SZ of level 3. In other words,
let (X ,X , µ,T ) be a system. Then for every f ∈ L∞(X ) with
f ≥ 0 and E(f ) > 0, we have

lim inf
N→∞

1
N

N−1∑
n=0

∫
X
f · T nf · T 2nf dµ > 0.

Intuition. We get rid of the weak mixing part of the system, and
project it onto its almost periodic piece, which is known to be SZ,
as it is a compact system.
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Proof

Roth’s Theorem – Key Ingredients

Proposition (♠). L2(X ) = WM(X )⊕ AP(X ) as an orthogonal
direct sum of Hilbert spaces. Therefore each f ∈ L2(X ) can be
written as f = fWM + fAP ∈WM(X )⊕ AP(X ).

Proposition (♣). Let (X ,X , µ,T ) be an ergodic system. Then
for any f , g ∈ L∞(X ), we have

lim
N→∞

1
N

N−1∑
n=0

(
T nf T 2ng − T nfAPT 2ngAP

)
= 0 in L2.

[The proof relies on von Neumann’s mean Ergodic Theorem.]

Theorem (�). Every compact system is SZ.
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Roth’s Theorem – Proof
Let f ∈ L∞(X ) with f ≥ 0 and E(f ) > 0.
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What About the Set of Primes?

Let P ··= {nonnegative primes} ⊂ Z, and π(x) ··= P ∩ [0, x ].
Claim (elementary). limx→∞ π(x)/x = 0. =⇒ δ(P) = 0.
Prime Number Theorem. π(x)/x ∼ log(x)−1 (as x →∞).
Question. Longest arithmetic progression containing only primes?

Theorem (B. Green and T. Tao, 2004)
For any k ∈ N+ there exists a k-term arithmetic progression in P.

Szemerédi’s Theorem is a key ingredient of the proof.

Example (B. Perichon, J. Wróblewski, and G. Reynolds, 2010)
43, 142, 746, 595, 714, 191 + 23, 681, 770 · 223, 092, 870 · n, for
n = 0 to 25. =⇒ 26-term arithmetic progression of primes.
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Ergodic Decomposition: An Example

Goal. Decompose an arbitrary system into ergodic components.
Why? Ergodic theorems have simple forms for ergodic systems.

Example (a special finite case, but works in general)
X = {1, 2, 3, 4, 5, 6}, X = 2X , µ: uniform, T = (2 3)(4 5 6) ∈ SX .
=⇒ T (1) = 1,T (2) = 3,T (3) = 2,T (4) = 5,T (5) = 6,T (6) = 4.
NOT ergodic: E = {1} is T -invariant, but µ(E ) = 1/6 /∈ {0, 1}.
BUT consider: µ1 = 1{1}, µ2 = (1/2) · 1{2,3}, µ3 = (1/3) · 1{4,5,6}.
Note: (X ,X , µi ,T ) IS ergodic for i = 1, 2, 3. Moreover, we have

µ = 1
6µ1 + 1

3µ2 + 1
2µ3 =⇒ weighted average of

ergodic measures.
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Szemerédi =⇒ Furstenberg

Lemma. Let (X ,X , µ,T ) be a system, and E ∈ X with µ(E ) > 0.
=⇒ ∃F ∈ X , µ(F ) > 0, s. t. ∀x ∈ F : δ

({
n ∈ Z | T nx ∈ E

})
> 0.

Fix a system (X ,X , µ,T ), E ∈ X with µ(E ) > 0, and k ∈ N+.
APk ··=

{
a = (a1, . . . , ak) ⊂ Z | a is arithmetic progression

}
.

Ba ··=
{
x ∈ X | T ai x ∈ E , 1 ≤ i ≤ k

}
; Bk ··=

⋃
a∈APk

Ba.

Note: Bk =
{
x ∈ X |

{
n ∈ Z | T nx ∈ E

}
contains some a ∈ APk

}
.

Choose F ∈ X as in the Lemma. By Szemerédi,
{
n ∈ Z | T nx ∈ E

}
contains some a ∈ APk for each x ∈ F . =⇒ F ⊆ Bk =

⋃
a∈APk

Ba, a
countable union. =⇒ Since µ(F ) > 0, ∃b ∈ APk : µ(Bb) > 0.
=⇒ T cBb ⊆ E ∩ T nE ∩ · · · ∩ T (k−1)nE for some c ∈ Z and n ∈ N+.
=⇒ µ(E ∩ T nE ∩ · · · ∩ T (k−1)nE ) ≥ µ(T cBb) = µ(Bb) > 0. �
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=⇒ µ(E ∩ T nE ∩ · · · ∩ T (k−1)nE ) ≥ µ(T cBb) = µ(Bb) > 0. �
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Compact Factors

Definition. Y is T -invariant, if TE ,T−1E ∈ Y for any E ∈ Y.

Definition. If X = (X ,X , µ,T ) is a system, X ′ = (X ,X ′, µ,T ) is
called a factor of X if X ′ is a T -invariant sub-σ-algebra of X .
A factor X ′ is trivial, if µ(E ) ∈ {0, 1} for all E ∈ X ′.
It is compact, if X ′ is a compact measure preserving system.

Theorem
Let X be a system. Exactly one of the followings is true:

1 X is weak mixing (“pseudorandomness”);
2 X has a nontrivial compact factor (“structure”).
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Kronecker Factors

Notation. If X = (X ,X , µ,T ), XAP ··=
{
A ∈ X | 1A ∈ AP(X )

}
.

Claim. XAP is a T -invariant sub-σ-algebra of X . Therefore
(X ,XAP , µ,T ) is a factor of X , called Kronecker factor.
Remark. The Kronecker is the maximal compact factor of X .

Proposition. Let (X ,X , µ,T ) be a system, and f ∈ L2(X ,X , µ).
1 f ∈ AP(X ) iff f is XAP -measurable: AP(X ) = L2(X ,XAP , µ).
2 f ∈WM(X ) iff E(f |XAP) = 0 a. e.
3 (♠) We can write f = fAP + fWM , where

fAP ··= E(f |XAP) ∈ AP(X ), and fWM ··= f − fAP ∈WM(X ).

Kristóf Huszár Szemerédi’s Theorem via Ergodic Theory
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