Szemerédi's Theorem via Ergodic Theory Rotation Project Final Presentation

Kristóf Huszár (PhD student)
Project supervised by: László Erdős
Institute of Science and Technology Austria

$$
\text { July 24, } 2014
$$

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_{+}$there exists a monochromatic k-term arithmetic progression.

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_{+}$there exists a monochromatic k-term arithmetic progression.

Definition. $\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z}$ ordered k-tuple is called a k-term arithmetic progression, if $a_{i+1}-a_{i}=d$ for all $i=1, \ldots, k-1$.

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_{+}$there exists a monochromatic k-term arithmetic progression.

Definition. $\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z}$ ordered k-tuple is called a k-term arithmetic progression, if $a_{i+1}-a_{i}=d$ for all $i=1, \ldots, k-1$.

Example

$\ldots, 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21, \ldots$

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_{+}$there exists a monochromatic k-term arithmetic progression.

Definition. $\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z}$ ordered k-tuple is called a k-term arithmetic progression, if $a_{i+1}-a_{i}=d$ for all $i=1, \ldots, k-1$.

Example

$\ldots, 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21, \ldots$

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_{+}$there exists a monochromatic k-term arithmetic progression.

Definition. $\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z}$ ordered k-tuple is called a k-term arithmetic progression, if $a_{i+1}-a_{i}=d$ for all $i=1, \ldots, k-1$.

Example

$\ldots, 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21, \ldots$
$k=1:$ trivial;

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_{+}$there exists a monochromatic k-term arithmetic progression.

Definition. $\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z}$ ordered k-tuple is called a k-term arithmetic progression, if $a_{i+1}-a_{i}=d$ for all $i=1, \ldots, k-1$.

Example

$\ldots, 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21, \ldots$
$k=1:$ trivial; $k=2$: trivial, e. g. $(6,7),(8,9),(10,18), \ldots$

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_{+}$there exists a monochromatic k-term arithmetic progression.

Definition. $\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z}$ ordered k-tuple is called a k-term arithmetic progression, if $a_{i+1}-a_{i}=d$ for all $i=1, \ldots, k-1$.

Example

$\ldots, 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21, \ldots$
$k=1:$ trivial; $k=2$: trivial, e. g. $(6,7),(8,9),(10,18), \ldots$ $k=3$: non-trivial, e. g. $(10,15,20)$;

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_{+}$there exists a monochromatic k-term arithmetic progression.

Definition. $\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z}$ ordered k-tuple is called a k-term arithmetic progression, if $a_{i+1}-a_{i}=d$ for all $i=1, \ldots, k-1$.

Example

$\ldots, 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21, \ldots$
$k=1$: trivial; $k=2$: trivial, e. g. $(6,7),(8,9),(10,18), \ldots$
$k=3:$ non-trivial, e. g. $(10,15,20) ; k=5:(5,9,13,17,21)$.

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_{+}$there exists a monochromatic k-term arithmetic progression.

Definition. $\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z}$ ordered k-tuple is called a \boldsymbol{k}-term arithmetic progression, if $a_{i+1}-a_{i}=d$ for all $i=1, \ldots, k-1$.

Example

$\ldots, 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21, \ldots$
$k=1:$ trivial; $k=2$: trivial, e. g. $(6,7),(8,9),(10,18), \ldots$ $k=3:$ non-trivial, e. g. $(10,15,20) ; k=5:(5,9,13,17,21)$.

Conjecture of P. Erdős \& P. Turán (1936). True reason: at least one of the color classes has positive upper density.

Historical Overview of Results

Definition. The upper density $\bar{\delta}(A)$ of a set $A \subseteq \mathbb{Z}$ is defined as

$$
\bar{\delta}(A):=\limsup _{n \rightarrow \infty} \frac{1}{2 n+1}|A \cap\{-n,-n+1, \ldots, n-1, n\}|
$$

Historical Overview of Results

Definition. The upper density $\bar{\delta}(A)$ of a set $A \subseteq \mathbb{Z}$ is defined as

$$
\bar{\delta}(A):=\limsup _{n \rightarrow \infty} \frac{1}{2 n+1}|A \cap\{-n,-n+1, \ldots, n-1, n\}| .
$$

Conjecture of P. Erdös \& P. Turán (1936). If $A \subseteq \mathbb{Z}$, such that $\bar{\delta}(A)>0 \Rightarrow A$ contains a k-term arithmetic progression for each k.

Historical Overview of Results

Definition. The upper density $\bar{\delta}(A)$ of a set $A \subseteq \mathbb{Z}$ is defined as

$$
\bar{\delta}(A):=\limsup _{n \rightarrow \infty} \frac{1}{2 n+1}|A \cap\{-n,-n+1, \ldots, n-1, n\}| .
$$

Conjecture of \mathbf{P}. Erdős \& P. Turán (1936). If $A \subseteq \mathbb{Z}$, such that $\bar{\delta}(A)>0 \Rightarrow A$ contains a k-term arithmetic progression for each k.

Theorem (K. F. Roth, 1953; E. Szemerédi, 1969 and 1975)

- K. F. Roth: $k=3$ (1953)
- E. Szemerédi: $k=4$ (1969), $\quad \forall k \in \mathbb{N}_{+}(1975)$.

Roth: Fields Medal (1958)
Szemerédi: Abel Prize (2012)

Historical Overview of Results

Definition. The upper density $\bar{\delta}(A)$ of a set $A \subseteq \mathbb{Z}$ is defined as

$$
\bar{\delta}(A):=\limsup _{n \rightarrow \infty} \frac{1}{2 n+1}|A \cap\{-n,-n+1, \ldots, n-1, n\}| .
$$

Conjecture of P. Erdős \& P. Turán (1936). If $A \subseteq \mathbb{Z}$, such that $\bar{\delta}(A)>0 \Rightarrow A$ contains a k-term arithmetic progression for each k.

Theorem (K. F. Roth, 1953; E. Szemerédi, 1969 and 1975)

- K. F. Roth: $k=3$ (1953)
- E. Szemerédi: $k=4$ (1969), $\quad \forall k \in \mathbb{N}_{+}(1975)$.

Roth: Fields Medal (1958) Szemerédi: Abel Prize (2012)
\Downarrow
Szemerédi’s Theorem

Historical Overview of Results

Definition. The upper density $\bar{\delta}(A)$ of a set $A \subseteq \mathbb{Z}$ is defined as

$$
\bar{\delta}(A):=\limsup _{n \rightarrow \infty} \frac{1}{2 n+1}|A \cap\{-n,-n+1, \ldots, n-1, n\}| .
$$

Conjecture of P. Erdős \& P. Turán (1936). If $A \subseteq \mathbb{Z}$, such that $\bar{\delta}(A)>0 \Rightarrow A$ contains a k-term arithmetic progression for each k.

Theorem (K. F. Roth, 1953; E. Szemerédi, 1969 and 1975)

- K. F. Roth: $k=3(1953) \Longleftarrow$ Goal of the talk.
- E. Szemerédi: $k=4$ (1969), $\quad \forall k \in \mathbb{N}_{+}$(1975).

Roth: Fields Medal (1958) Szemerédi: Abel Prize (2012)
\Downarrow
Szemerédi’s Theorem

Roadmap of Szemerédi's Original Proof

The diagram represents an approximate flow chart for the accompanying proof of Szemerédi's theorem. The various symbols have the following meanings: $\mathrm{F}_{k} \equiv$ Fact k, $\mathrm{L}_{k} \equiv$ Lemma $k, \mathrm{~T} \equiv$ Theorem, $\mathrm{C} \equiv$ Corollary, $\mathrm{D} \equiv$ Definitions of B, S, P, a, β, etc., $\mathrm{t}_{m} \equiv$ Definition of t_{m}, vdW $=$ van der Waerden's theorem, $\mathrm{F}_{\mathbf{0}} \equiv$ "If $f: \boldsymbol{R}^{+} \rightarrow \boldsymbol{R}^{+}$is subadditive then $\lim _{n \rightarrow \infty} \frac{f(n)}{n}$ exists".

A Surprising Connection

In 1977 H. Furstenberg gave a new proof via ergodic theory.

$$
\text { Additive Combinatorics } \xlongequal{\text { connection }} \text { Dynamical Systems }
$$

A Surprising Connection

In 1977 H. Furstenberg gave a new proof via ergodic theory.

$$
\text { Additive Combinatorics } \xlongequal{\text { connection }} \text { Dynamical Systems }
$$

Outline of the Talk

(1) Ergodic Theory. Basic concepts, notation, ergodic theorems, ergodic decomposition.
(2) Correspondence Principle. Converting problems in additive combinatorics into problems about dynamical systems.
(3) Weak Mixing \& Compact Systems. Two extreme cases ("pseudorandom" \& "structured" systems).
(9) Roth's Theorem $(k=3)$. Putting the pieces together.

A Surprising Connection

In 1977 H. Furstenberg gave a new proof via ergodic theory.
Additive Combinatorics $\xlongequal{\text { connection }}$ Dynamical Systems
Outline of the Talk
(1) Ergodic Theory. Basic concepts, notation, ergodic theorems, ergodic decomposition.
(2) Correspondence Principle. Converting problems in additive combinatorics into problems about dynamical systems.
(3) Weak Mixing \& Compact Systems. Two extreme cases ("pseudorandom" \& "structured" systems).
(9) Roth's Theorem $(k=3)$. Putting the pieces together.

Remark. We mainly follow the exposition of the essay Szemerédi's Theorem via Ergodic Theory by Yufei Zhao (2011).

Ergodic Theory I. - Dynamical Systems

Ergodic Theory I. - Dynamical Systems

Definition. X some set, $T: X \rightarrow X$ (shift map). The pair (X, T) is called a dynamical system. [We assume T is invertible.]

Ergodic Theory I. - Dynamical Systems

Definition. X some set, $T: X \rightarrow X$ (shift map). The pair (X, T) is called a dynamical system. [We assume T is invertible.]
Question. What is the evolution of the system, as we iterate T ?

Ergodic Theory I. - Dynamical Systems

Definition. X some set, $T: X \rightarrow X$ (shift map). The pair (X, T) is called a dynamical system. [We assume T is invertible.]
Question. What is the evolution of the system, as we iterate T ? Notation. $T^{n}:=T \circ \cdots \circ T, T^{-n}:=T^{-1} \circ \cdots \circ T^{-1}(n$ times $)$. $T^{n} E:=\left\{T^{n}(x) \mid x \in E\right\} ; T^{n} f(x):=f\left(T^{-n}(x)\right)$, if $f: X \rightarrow X$.

Ergodic Theory I. - Dynamical Systems

Definition. X some set, $T: X \rightarrow X$ (shift map). The pair (X, T) is called a dynamical system. [We assume T is invertible.]
Question. What is the evolution of the system, as we iterate T ? Notation. $T^{n}:=T \circ \cdots \circ T, T^{-n}:=T^{-1} \circ \cdots \circ T^{-1}(n$ times $)$. $T^{n} E:=\left\{T^{n}(x) \mid x \in E\right\} ; T^{n} f(x):=f\left(T^{-n}(x)\right)$, if $f: X \rightarrow X$.

> Topological Dynamical Systems
> X is a compact metric space,
> $T: X \rightarrow X$ is homeomorphism.
> \Rightarrow Topological Dynamics

Correspondence Principle

Ergodic Theory I．－Dynamical Systems

Definition．X some set，$T: X \rightarrow X$（shift map）．The pair (X, T) is called a dynamical system．［We assume T is invertible．］
Question．What is the evolution of the system，as we iterate T ？
Notation．$T^{n}:=T \circ \cdots \circ T, T^{-n}:=T^{-1} \circ \cdots \circ T^{-1}(n$ times $)$ ．
$T^{n} E:=\left\{T^{n}(x) \mid x \in E\right\} ; T^{n} f(x):=f\left(T^{-n}(x)\right)$ ，if $f: X \rightarrow X$ ．

Topological Dynamical Systems

X is a compact metric space，
$T: X \rightarrow X$ is homeomorphism．
\Rightarrow Topological Dynamics

Measure Preserving Systems

(X, \mathcal{X}, μ, T) ，where
－X compact metric space，
－ $\mathcal{X} \sigma$－algebra of measurable sets，
－μ prob．measure：$\mu(X)=1$ ，
－T measure preserving：$\forall E \in \mathcal{X}$ ，

$$
\forall n \in \mathbb{Z}: \mu\left(T^{n} E\right)=\mu(E)
$$

\Rightarrow Ergodic Theory

Ergodic Theory I. - Dynamical Systems

Definition. X some set, $T: X \rightarrow X$ (shift map). The pair (X, T) is called a dynamical system. [We assume T is invertible.]
Question. What is the evolution of the system, as we iterate T ?
Notation. $T^{n}:=T \circ \cdots \circ T, T^{-n}:=T^{-1} \circ \cdots \circ T^{-1}(n$ times $)$.
$T^{n} E:=\left\{T^{n}(x) \mid x \in E\right\} ; T^{n} f(x):=f\left(T^{-n}(x)\right)$, if $f: X \rightarrow X$.

Topological Dynamical Systems

X is a compact metric space,
$T: X \rightarrow X$ is homeomorphism.
\Rightarrow Topological Dynamics
In this talk: system := measure preserving system. All functions are measurable.

Measure Preserving Systems

(X, \mathcal{X}, μ, T), where

- X compact metric space,
- $\mathcal{X} \sigma$-algebra of measurable sets,
- μ prob. measure: $\mu(X)=1$,
- T measure preserving: $\forall E \in \mathcal{X}$,

$$
\forall n \in \mathbb{Z}: \mu\left(T^{n} E\right)=\mu(E)
$$

\Rightarrow Ergodic Theory

Ergodic Theory I. - Dynamical Systems

Definition. X some set, $T: X \rightarrow X$ (shift map). The pair (X, T) is called a dynamical system. [We assume T is invertible.]
Question. What is the evolution of the system, as we iterate T ?
Notation. $T^{n}:=T \circ \cdots \circ T, T^{-n}:=T^{-1} \circ \cdots \circ T^{-1}(n$ times $)$.
$T^{n} E:=\left\{T^{n}(x) \mid x \in E\right\} ; T^{n} f(x):=f\left(T^{-n}(x)\right)$, if $f: X \rightarrow X$.

Topological Dynamical Systems

X is a compact metric space,
$T: X \rightarrow X$ is homeomorphism.
\Rightarrow Topological Dynamics
In this talk: system := measure preserving system. All functions are measurable.

Measure Preserving Systems

(X, \mathcal{X}, μ, T), where

- X compact metric space,
- $\mathcal{X} \sigma$-algebra of measurable sets,
- μ prob. measure: $\mu(X)=1$,
- T measure preserving: $\forall E \in \mathcal{X}$,

$$
\forall n \in \mathbb{Z}: \mu\left(T^{n} E\right)=\mu(E)
$$

\Rightarrow Ergodic Theory

Correspondence Principle

Ergodic Theory I. - Dynamical Systems

Definition. X some set, $T: X \rightarrow X$ (shift map). The pair (X, T) is called a dynamical system. [We assume T is invertible.]
Question. What is the evolution of the system, as we iterate T ?
Notation. $T^{n}:=T \circ \cdots \circ T, T^{-n}:=T^{-1} \circ \cdots \circ T^{-1}(n$ times $)$.
$T^{n} E:=\left\{T^{n}(x) \mid x \in E\right\} ; T^{n} f(x):=f\left(T^{-n}(x)\right)$, if $f: X \rightarrow X$.

Topological Dynamical Systems

X is a compact metric space,
$T: X \rightarrow X$ is homeomorphism.
\Rightarrow Topological Dynamics
In this talk: system := measure preserving system. All functions are measurable.

Measure Preserving Systems

(X, \mathcal{X}, μ, T), where

- X compact metric space,
- $\mathcal{X} \sigma$-algebra of measurable sets,
- μ prob. measure: $\mu(X)=1$,
- T measure preserving: $\forall E \in \mathcal{X}$,

$$
\forall n \in \mathbb{Z}: \mu\left(T^{n} E\right)=\mu(E)
$$

\Rightarrow Ergodic Theory

Ergodic Theory II. - Basic Concepts

Notation. $\mathcal{X}^{T}:=\{E \in \mathcal{X} \mid T E=E\}$ (sub- σ-algebra of \mathcal{X}).

Ergodic Theory II. - Basic Concepts

Notation. $\mathcal{X}^{T}:=\{E \in \mathcal{X} \mid T E=E\}$ (sub- σ-algebra of \mathcal{X}).
Definition I. A system $X=(X, \mathcal{X}, \mu, T)$ is called ergodic if for all $E \in \mathcal{X}^{T}$ we have $\mu(E)=0$ or $\mu(E)=1$.

Ergodic Theory II. - Basic Concepts

Notation. $\mathcal{X}^{T}:=\{E \in \mathcal{X} \mid T E=E\}$ (sub- σ-algebra of \mathcal{X}).
Definition I. A system $X=(X, \mathcal{X}, \mu, T)$ is called ergodic if for all $E \in \mathcal{X}^{T}$ we have $\mu(E)=0$ or $\mu(E)=1$.

Definition II. [...] ergodic if every f s. t. Tf $=f$ is constant a. e.

Ergodic Theory II. - Basic Concepts

Notation. $\mathcal{X}^{T}:=\{E \in \mathcal{X} \mid T E=E\}$ (sub- σ-algebra of \mathcal{X}).
Definition I. A system $X=(X, \mathcal{X}, \mu, T)$ is called ergodic if for all $E \in \mathcal{X}^{T}$ we have $\mu(E)=0$ or $\mu(E)=1$.

Definition II. [...] ergodic if every f s. t. Tf $=f$ is constant a. e.
$L^{2}:=L^{2}(X, \mathcal{X}, \mu):=\left\{f:\left.X \rightarrow \mathbb{R}\left|\int_{X}\right| f\right|^{2} \mathrm{~d} \mu<\infty\right\} / \sim$, where
$f \sim g \Longleftrightarrow f=g$ a. e. L^{2} is a Hilbert space; $\langle f, g\rangle:=\int_{X} f g \mathrm{~d} \mu$.

Ergodic Theory II. - Basic Concepts

Notation. $\mathcal{X}^{T}:=\{E \in \mathcal{X} \mid T E=E\}$ (sub- σ-algebra of \mathcal{X}).
Definition I. A system $X=(X, \mathcal{X}, \mu, T)$ is called ergodic if for all $E \in \mathcal{X}^{T}$ we have $\mu(E)=0$ or $\mu(E)=1$.

Definition II. [...] ergodic if every f s. t. Tf $=f$ is constant a. e.
$L^{2}:=L^{2}(X, \mathcal{X}, \mu):=\left\{f:\left.X \rightarrow \mathbb{R}\left|\int_{X}\right| f\right|^{2} \mathrm{~d} \mu<\infty\right\} / \sim$, where
$f \sim g \Longleftrightarrow f=g$ a. e. L^{2} is a Hilbert space; $\langle f, g\rangle:=\int_{X} f g \mathrm{~d} \mu$.
$\mathcal{Y} \subseteq \mathcal{X}$ is a σ-alg. $\Longrightarrow L^{2}(X, \mathcal{Y}, \mu) \leq L^{2}(X, \mathcal{X}, \mu)$ closed subspace.

Ergodic Theory II. - Basic Concepts

Notation. $\mathcal{X}^{T}:=\{E \in \mathcal{X} \mid T E=E\}$ (sub- σ-algebra of \mathcal{X}).
Definition I. A system $X=(X, \mathcal{X}, \mu, T)$ is called ergodic if for all $E \in \mathcal{X}^{T}$ we have $\mu(E)=0$ or $\mu(E)=1$.

Definition II. [...] ergodic if every f s. t. Tf $=f$ is constant a. e.
$L^{2}:=L^{2}(X, \mathcal{X}, \mu):=\left\{f:\left.X \rightarrow \mathbb{R}\left|\int_{X}\right| f\right|^{2} \mathrm{~d} \mu<\infty\right\} / \sim$, where
$f \sim g \Longleftrightarrow f=g$ a. e. L^{2} is a Hilbert space; $\langle f, g\rangle:=\int_{X} f g \mathrm{~d} \mu$.
$\mathcal{Y} \subseteq \mathcal{X}$ is a σ-alg. $\Longrightarrow L^{2}(X, \mathcal{Y}, \mu) \leq L^{2}(X, \mathcal{X}, \mu)$ closed subspace. The orthogonal projection $\mathbb{E}(\cdot \mid \mathcal{Y}): L^{2}(X, \mathcal{X}, \mu) \rightarrow L^{2}(X, \mathcal{Y}, \mu)$ is called conditional expectation.

Ergodic Theory II. - Basic Concepts

Notation. $\mathcal{X}^{T}:=\{E \in \mathcal{X} \mid T E=E\}$ (sub- σ-algebra of \mathcal{X}).
Definition I. A system $X=(X, \mathcal{X}, \mu, T)$ is called ergodic if for all $E \in \mathcal{X}^{T}$ we have $\mu(E)=0$ or $\mu(E)=1$.
Definition II. [...] ergodic if every f s. t. Tf $=f$ is constant a. e.
$L^{2}:=L^{2}(X, \mathcal{X}, \mu):=\left\{f:\left.X \rightarrow \mathbb{R}\left|\int_{X}\right| f\right|^{2} \mathrm{~d} \mu<\infty\right\} / \sim$, where $f \sim g \Longleftrightarrow f=g$ a. e. L^{2} is a Hilbert space; $\langle f, g\rangle:=\int_{X} f g \mathrm{~d} \mu$.
$\mathcal{Y} \subseteq \mathcal{X}$ is a σ-alg. $\Longrightarrow L^{2}(X, \mathcal{Y}, \mu) \leq L^{2}(X, \mathcal{X}, \mu)$ closed subspace. The orthogonal projection $\mathbb{E}(\cdot \mid \mathcal{Y}): L^{2}(X, \mathcal{X}, \mu) \rightarrow L^{2}(X, \mathcal{Y}, \mu)$ is called conditional expectation.
Proposition. If a system X is ergodic, then $\mathbb{E}\left(f \mid \mathcal{X}^{T}\right)=\mathbb{E}(f)$, where $\mathbb{E}(f)=\int_{X} f \mathrm{~d} \mu$ is the usual expectation.

Ergodic Theory III. - Ergodic Theorems

"General Form" of Ergodic Theorems.

$$
\operatorname{Av}_{N}\left(T^{n} f\right):=\frac{1}{N} \sum_{n=0}^{N-1} T^{n} f \quad \xrightarrow[\text { some sense }]{(N \rightarrow \infty)} \quad \mathbb{E}\left(f \mid \mathcal{X}^{T}\right)
$$

Definition. $\operatorname{Av}_{N}\left(T^{n} f\right)$: time average; $\mathbb{E}(f)$: space average.

Ergodic Theory III. - Ergodic Theorems

"General Form" of Ergodic Theorems.

$$
\operatorname{Av}_{N}\left(T^{n} f\right):=\frac{1}{N} \sum_{n=0}^{N-1} T^{n} f \quad \xrightarrow[\text { some sense }]{(N \rightarrow \infty)} \quad \mathbb{E}\left(f \mid \mathcal{X}^{T}\right)
$$

Definition. $\operatorname{Av}_{N}\left(T^{n} f\right)$: time average; $\mathbb{E}(f)$: space average. Proposition. If a system X is ergodic, then $\mathbb{E}\left(f \mid \mathcal{X}^{T}\right)=\mathbb{E}(f)$.

Ergodic Theory III. - Ergodic Theorems

"General Form" of Ergodic Theorems.

$$
A v_{N}\left(T^{n} f\right):=\frac{1}{N} \sum_{n=0}^{N-1} T^{n} f \underset{\text { some sense }}{(N \rightarrow \infty)} \mathbb{E}\left(f \mid \mathcal{X}^{T}\right)
$$

Definition. $\operatorname{Av}_{N}\left(T^{n} f\right)$: time average; $\mathbb{E}(f)$: space average.
Proposition. If a system X is ergodic, then $\mathbb{E}\left(f \mid \mathcal{X}^{T}\right)=\mathbb{E}(f)$.

Theorem (von Neumann mean ergodic theorem)

Let $X=(X, \mathcal{X}, \mu, T)$ be a system, and $f \in L^{2}(X, \mathcal{X}, \mu)$. Then $\operatorname{Av}_{N}\left(T^{n} f\right) \longrightarrow \mathbb{E}\left(f \mid \mathcal{X}^{T}\right) \quad$ in L^{2}
as $N \rightarrow \infty$. If X is ergodic, then the limit equals $\mathbb{E}(f)$.

Ergodic Theory III. - Ergodic Theorems

"General Form" of Ergodic Theorems.

$$
\operatorname{Av}_{N}\left(T^{n} f\right):=\frac{1}{N} \sum_{n=0}^{N-1} T^{n} f \quad \xrightarrow[\text { some sense }]{(N \rightarrow \infty)} \quad \mathbb{E}\left(f \mid \mathcal{X}^{T}\right)
$$

Definition. $\operatorname{Av}_{N}\left(T^{n} f\right)$: time average; $\mathbb{E}(f)$: space average.
Proposition. If a system X is ergodic, then $\mathbb{E}\left(f \mid \mathcal{X}^{T}\right)=\mathbb{E}(f)$.

Theorem (von Neumann mean ergodic theorem)

Let $X=(X, \mathcal{X}, \mu, T)$ be a system, and $f \in L^{2}(X, \mathcal{X}, \mu)$. Then

$$
\operatorname{Av}_{N}\left(T^{n} f\right) \longrightarrow \mathbb{E}\left(f \mid \mathcal{X}^{T}\right) \quad \text { in } L^{2} \quad(\Rightarrow \text { also weakly })
$$

as $N \rightarrow \infty$. If X is ergodic, then the limit equals $\mathbb{E}(f)$.

Ergodic Theory IV. - Ergodic Decomposition

Goal. Decompose an arbitrary system into ergodic components.

Ergodic Theory IV. - Ergodic Decomposition

Goal. Decompose an arbitrary system into ergodic components.
Why? Ergodic theorems have simple forms for ergodic systems.

Ergodic Theory IV. - Ergodic Decomposition

Goal. Decompose an arbitrary system into ergodic components.
Why? Ergodic theorems have simple forms for ergodic systems.

Theorem (Ergodic Decomposition)

Let (X, \mathcal{X}, μ, T) be a system. Let $\mathcal{E}(X)$ denote the set of ergodic measures on X. There exists a probability measure ρ_{μ} on $\mathcal{E}(X)$ such that

$$
\mu=\int_{\mathcal{E}(X)} \nu \rho_{\mu}(\mathrm{d} \nu)
$$

Ergodic Theory IV. - Ergodic Decomposition

Goal. Decompose an arbitrary system into ergodic components.
Why? Ergodic theorems have simple forms for ergodic systems.

Theorem (Ergodic Decomposition)

Let (X, \mathcal{X}, μ, T) be a system. Let $\mathcal{E}(X)$ denote the set of ergodic measures on X. There exists a probability measure ρ_{μ} on $\mathcal{E}(X)$ such that

$$
\mu=\int_{\mathcal{E}(X)} \nu \rho_{\mu}(\mathrm{d} \nu)
$$

Finite decomposition. $\mu=\sum_{i=1}^{n} \alpha_{i} \mu_{i}$, with $\sum_{i=1}^{n} \alpha_{i}=1, \alpha_{i} \geq 0$, where the system $\left(X, \mathcal{X}, \mu_{i}, T\right)$ is ergodic for $i=1, \ldots, n$.

Ergodic Theory IV. - Ergodic Decomposition

Goal. Decompose an arbitrary system into ergodic components.
Why? Ergodic theorems have simple forms for ergodic systems.

Theorem (Ergodic Decomposition)

Let (X, \mathcal{X}, μ, T) be a system. Let $\mathcal{E}(X)$ denote the set of ergodic measures on X. There exists a probability measure ρ_{μ} on $\mathcal{E}(X)$ such that

$$
\mu=\int_{\mathcal{E}(X)} \nu \rho_{\mu}(\mathrm{d} \nu)
$$

Finite decomposition. $\mu=\sum_{i=1}^{n} \alpha_{i} \mu_{i}$, with $\sum_{i=1}^{n} \alpha_{i}=1, \alpha_{i} \geq 0$, where the system $\left(X, \mathcal{X}, \mu_{i}, T\right)$ is ergodic for $i=1, \ldots, n$.
\Longrightarrow We can assume ergodicity of systems in certain types of proofs (including the proof of Szemerédi's Theorem).

Correspondence Principle I. - Bernoulli Systems

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory.

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory. \Longrightarrow We define an equivalent problem for systems!

Correspondence Principle I. - Bernoulli Systems

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory. \Longrightarrow We define an equivalent problem for systems!
Bernoulli systems. $X=\mathcal{P}(\mathbb{Z})$ (the power set of \mathbb{Z}), and $T: X \rightarrow X$ is defined as $T(B)=B+1=\{b+1 \mid b \in B \subseteq \mathbb{Z}\}$.

Correspondence Principle I. - Bernoulli Systems

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory. \Longrightarrow We define an equivalent problem for systems!
Bernoulli systems. $X=\mathcal{P}(\mathbb{Z})$ (the power set of \mathbb{Z}), and $T: X \rightarrow X$ is defined as $T(B)=B+1=\{b+1 \mid b \in B \subseteq \mathbb{Z}\}$.

- $X \cong\{0,1\}^{\mathbb{Z}}$, which we equip with the product topology (each $\{0,1\}$ is a discrete space).

Correspondence Principle I. - Bernoulli Systems

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory. \Longrightarrow We define an equivalent problem for systems!
Bernoulli systems. $X=\mathcal{P}(\mathbb{Z})$ (the power set of \mathbb{Z}), and $T: X \rightarrow X$ is defined as $T(B)=B+1=\{b+1 \mid b \in B \subseteq \mathbb{Z}\}$.

- $X \cong\{0,1\}^{\mathbb{Z}}$, which we equip with the product topology (each $\{0,1\}$ is a discrete space).
- By Tychonoff's Theorem X is compact. [Main reason for choosing $\{0,1\}^{\mathbb{Z}}$ instead of \mathbb{Z}.]

Correspondence Principle I. - Bernoulli Systems

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory. \Longrightarrow We define an equivalent problem for systems!
Bernoulli systems. $X=\mathcal{P}(\mathbb{Z})$ (the power set of \mathbb{Z}), and $T: X \rightarrow X$ is defined as $T(B)=B+1=\{b+1 \mid b \in B \subseteq \mathbb{Z}\}$.

- $X \cong\{0,1\}^{\mathbb{Z}}$, which we equip with the product topology (each $\{0,1\}$ is a discrete space).
- By Tychonoff's Theorem X is compact. [Main reason for choosing $\{0,1\}^{\mathbb{Z}}$ instead of \mathbb{Z}.]
- X is also metrizable.

Correspondence Principle I. - Bernoulli Systems

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory. \Longrightarrow We define an equivalent problem for systems!
Bernoulli systems. $X=\mathcal{P}(\mathbb{Z})$ (the power set of \mathbb{Z}), and $T: X \rightarrow X$ is defined as $T(B)=B+1=\{b+1 \mid b \in B \subseteq \mathbb{Z}\}$.

- $X \cong\{0,1\}^{\mathbb{Z}}$, which we equip with the product topology (each $\{0,1\}$ is a discrete space).
- By Tychonoff's Theorem X is compact. [Main reason for choosing $\{0,1\}^{\mathbb{Z}}$ instead of \mathbb{Z}.]
- X is also metrizable.
\Longrightarrow We have a topological dynamical system.

Correspondence Principle I. - Bernoulli Systems

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory. \Longrightarrow We define an equivalent problem for systems!
Bernoulli systems. $X=\mathcal{P}(\mathbb{Z})$ (the power set of \mathbb{Z}), and $T: X \rightarrow X$ is defined as $T(B)=B+1=\{b+1 \mid b \in B \subseteq \mathbb{Z}\}$.

- $X \cong\{0,1\}^{\mathbb{Z}}$, which we equip with the product topology (each $\{0,1\}$ is a discrete space).
- By Tychonoff's Theorem X is compact. [Main reason for choosing $\{0,1\}^{\mathbb{Z}}$ instead of \mathbb{Z}.]
- X is also metrizable.
\Longrightarrow We have a topological dynamical system.
Idea. Working in an appropriate subspace of X, we shall turn it into a measure space via a T-invariant measure μ. \rightsquigarrow Goal.

Correspondence Principle II. - Arithmetic Progressions

\exists arithmetic progressions in $A \subseteq \mathbb{Z}$ with $\bar{\delta}(A)>0$.
\exists arithmetic progressions in $E \subseteq X$ with $\mu(E)>0$.

Correspondence Principle II. - Arithmetic Progressions

\exists arithmetic progressions in $A \subseteq \mathbb{Z}$ with $\bar{\delta}(A)>0$.
\exists arithmetic progressions in $E \subseteq X$ with $\mu(E)>0$.
\boldsymbol{k}-term arithmetic progression: $x, T^{n} x, T^{2 n} x, \ldots, T^{(k-1) n} x \in E$.

Correspondence Principle II. - Arithmetic Progressions

\exists arithmetic progressions in $A \subseteq \mathbb{Z}$ with $\bar{\delta}(A)>0$.

\exists arithmetic progressions

 in $E \subseteq X$ with $\mu(E)>0$.\boldsymbol{k}-term arithmetic progression: $x, T^{n} x, T^{2 n} x, \ldots, T^{(k-1) n} x \in E$.

Question. Given a system, $E \in \mathcal{X}$ with $\mu(E)>0$, and $k \in \mathbb{N}_{+}$, can we show $E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} \neq \emptyset$ always for some $n>0$?

Correspondence Principle II. - Arithmetic Progressions

\exists arithmetic progressions in $A \subseteq \mathbb{Z}$ with $\bar{\delta}(A)>0$.
\exists arithmetic progressions in $E \subseteq X$ with $\mu(E)>0$.
k-term arithmetic progression: $x, T^{n} x, T^{2 n} x, \ldots, T^{(k-1) n} x \in E$.
Question. Given a system, $E \in \mathcal{X}$ with $\mu(E)>0$, and $k \in \mathbb{N}_{+}$, can we show $E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} \neq \emptyset$ always for some $n>0$?

We shall prove more: $\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n}\right)>0 . \Longrightarrow$ This would give an affirmative answer for the above question.

Correspondence Principle II. - Arithmetic Progressions

\exists arithmetic progressions in $A \subseteq \mathbb{Z}$ with $\bar{\delta}(A)>0$.
\exists arithmetic progressions in $E \subseteq X$ with $\mu(E)>0$.
\boldsymbol{k}-term arithmetic progression: $x, T^{n} x, T^{2 n} x, \ldots, T^{(k-1) n} x \in E$.
Question. Given a system, $E \in \mathcal{X}$ with $\mu(E)>0$, and $k \in \mathbb{N}_{+}$, can we show $E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} \neq \emptyset$ always for some $n>0$?

We shall prove more: $\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n}\right)>0 . \Longrightarrow$ This would give an affirmative answer for the above question.

Note. For $k=2$, the claim is a trivial also in this setting. (Also compare with: Poincaré Recurrence Theorem.)

Correspondence Principle III. - Multiple Recurrence

Theorem (E. Szemerédi, 1975)

If $A \subseteq \mathbb{Z}$, such that $\bar{\delta}(A)>0 \Longrightarrow A$ contains a k-term arithmetic progression for each $k \in \mathbb{N}_{+}$.

Correspondence

Principle

Multiple Recurrence Theorem (H. Furstenberg, 1977)

Let (X, \mathcal{X}, μ, T) be a system, and $k \in \mathbb{N}_{+}$. Then for any $E \in \mathcal{X}$ with $\mu(E)>0$ there exists some $n \in \mathbb{N}_{+}$such that

$$
\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)>0
$$

Furstenberg \Longrightarrow Szemerédi

Fix $A \subseteq \mathbb{Z}$ with $\bar{\delta}(A)>0$.

Szemerédi

Fix $A \subseteq \mathbb{Z}$ with $\bar{\delta}(A)>0$. Represent $A \rightarrow a \in\{0,1\}^{\mathbb{Z}}$ in the Bernoulli system $\left(\{0,1\}^{\mathbb{Z}}, T\right)$, where T im $(B \mapsto B+1)$.

Furstenberg \Longrightarrow Szemerédi

Fix $A \subseteq \mathbb{Z}$ with $\bar{\delta}(A)>0$. Represent $A \leadsto a \in\{0,1\}^{\mathbb{Z}}$ in the Bernoulli system $\left(\{0,1\}^{\mathbb{Z}}, T\right)$, where $T \leadsto(B \mapsto B+1)$.
Let $X:=\overline{\left\{T^{n} a \mid n \in \mathbb{Z}\right\}}$, and $E=\left\{b \in X \mid b_{0}=1\right\}$.

Furstenberg \Longrightarrow Szemerédi

Fix $A \subseteq \mathbb{Z}$ with $\bar{\delta}(A)>0$. Represent $A \nrightarrow a \in\{0,1\}^{\mathbb{Z}}$ in the Bernoulli system $\left(\{0,1\}^{\mathbb{Z}}, T\right)$, where $T \leadsto(B \mapsto B+1)$.
Let $X:=\overline{\left\{T^{n} a \mid n \in \mathbb{Z}\right\}}$, and $E=\left\{b \in X \mid b_{0}=1\right\}$.
If there was a μT-invariant measure on X, s. t. $\mu(E)>0$, then by Furstenberg we would get $\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)>0$ for some $n \in \mathbb{N}_{+}$.

Furstenberg \Longrightarrow Szemerédi

Fix $A \subseteq \mathbb{Z}$ with $\bar{\delta}(A)>0$. Represent $A \leadsto a \in\{0,1\}^{\mathbb{Z}}$ in the Bernoulli system $\left(\{0,1\}^{\mathbb{Z}}, T\right)$, where $T \leadsto(B \mapsto B+1)$.
Let $X:=\overline{\left\{T^{n} a \mid n \in \mathbb{Z}\right\}}$, and $E=\left\{b \in X \mid b_{0}=1\right\}$.
If there was a μT-invariant measure on X, s. t. $\mu(E)>0$, then by Furstenberg we would get $\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)>0$ for some $n \in \mathbb{N}_{+} . \Longrightarrow \emptyset \neq E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E \ni T^{-m}$ a for some $m \in \mathbb{Z}$.

Furstenberg \Longrightarrow Szemerédi

Fix $A \subseteq \mathbb{Z}$ with $\bar{\delta}(A)>0$. Represent $A \rightarrow a \in\{0,1\}^{\mathbb{Z}}$ in the Bernoulli system $\left(\{0,1\}^{\mathbb{Z}}, T\right)$, where $T \leadsto(B \mapsto B+1)$.
Let $X:=\overline{\left\{T^{n} a \mid n \in \mathbb{Z}\right\}}$, and $E=\left\{b \in X \mid b_{0}=1\right\}$.
If there was a μT-invariant measure on X, s. t. $\mu(E)>0$, then by Furstenberg we would get $\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)>0$ for some $n \in \mathbb{N}_{+} . \Longrightarrow \emptyset \neq E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E \ni T^{-m}$ a for some $m \in \mathbb{Z}$. Then $\left(T^{-m} a\right)_{0}=\left(T^{-n-m} a\right)_{0}=\cdots=\left(T^{-(k-1) n-m} a\right)_{0}=1$.

Furstenberg \Longrightarrow Szemerédi

Fix $A \subseteq \mathbb{Z}$ with $\bar{\delta}(A)>0$. Represent $A \rightarrow a \in\{0,1\}^{\mathbb{Z}}$ in the Bernoulli system $\left(\{0,1\}^{\mathbb{Z}}, T\right)$, where $T \longleftrightarrow(B \mapsto B+1)$.
Let $X:=\overline{\left\{T^{n} a \mid n \in \mathbb{Z}\right\}}$, and $E=\left\{b \in X \mid b_{0}=1\right\}$.
If there was a μT-invariant measure on X, s. t. $\mu(E)>0$, then by Furstenberg we would get $\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)>0$ for some $n \in \mathbb{N}_{+} . \Longrightarrow \emptyset \neq E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E \ni T^{-m}$ a for some $m \in \mathbb{Z}$.
Then $\underbrace{\left(T^{-m} a\right)_{0}}_{m \in A}=\underbrace{\left(T^{-n-m} a\right)_{0}}_{n+m \in A}=\cdots=\underbrace{\left(T^{-(k-1) n-m} a\right)_{0}}_{(k-1) n+m \in A}=1$.

Furstenberg \Longrightarrow Szemerédi

Fix $A \subseteq \mathbb{Z}$ with $\bar{\delta}(A)>0$. Represent $A \rightarrow a \in\{0,1\}^{\mathbb{Z}}$ in the Bernoulli system $\left(\{0,1\}^{\mathbb{Z}}, T\right)$, where $T \longleftrightarrow(B \mapsto B+1)$.
Let $X:=\overline{\left\{T^{n} a \mid n \in \mathbb{Z}\right\}}$, and $E=\left\{b \in X \mid b_{0}=1\right\}$.
If there was a μT-invariant measure on X, s. t. $\mu(E)>0$, then by
Furstenberg we would get $\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)>0$ for some $n \in \mathbb{N}_{+} . \Longrightarrow \emptyset \neq E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E \ni T^{-m}$ a for some $m \in \mathbb{Z}$.
Then $\underbrace{\left(T^{-m} a\right)_{0}}_{m \in A}=\underbrace{\left(T^{-n-m} a\right)_{0}}_{n+m \in A}=\cdots=\underbrace{\left(T^{-(k-1) n-m} a\right)_{0}}_{(k-1) n+m \in A}=1$.
Existence. $\mu_{N}:=\frac{1}{2 N+1} \sum_{n=-N}^{N} \delta_{T^{n} a}$.

Furstenberg \Longrightarrow Szemerédi

Fix $A \subseteq \mathbb{Z}$ with $\bar{\delta}(A)>0$. Represent $A \leadsto a \in\{0,1\}^{\mathbb{Z}}$ in the Bernoulli system $\left(\{0,1\}^{\mathbb{Z}}, T\right)$, where $T \longleftrightarrow(B \mapsto B+1)$.
Let $X:=\overline{\left\{T^{n} a \mid n \in \mathbb{Z}\right\}}$, and $E=\left\{b \in X \mid b_{0}=1\right\}$.
If there was a μT-invariant measure on X, s. t. $\mu(E)>0$, then by Furstenberg we would get $\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)>0$ for some $n \in \mathbb{N}_{+} . \Longrightarrow \emptyset \neq E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E \ni T^{-m}$ a for some $m \in \mathbb{Z}$.
Then $\underbrace{\left(T^{-m} a\right)_{0}}_{m \in A}=\underbrace{\left(T^{-n-m} a\right)_{0}}_{n+m \in A}=\cdots=\underbrace{\left(T^{-(k-1) n-m} a\right)_{0}}_{(k-1) n+m \in A}=1$.
Existence. $\mu_{N}:=\frac{1}{2 N+1} \sum_{n=-N}^{N} \delta_{T^{n} a}$. Homework: The sequence $\left(\mu_{N}\right)_{N \in \mathbb{N}}$ has some T-invariant weak limit μ, for which $\mu(E)>0$. [Use the assumption $\bar{\delta}(A)>0$ \& the Banach-Alaoglu Theorem.]

Szemerédi Systems (SZ Systems)

Multiple Recurrence Theorem (alternative form)

(X, \mathcal{X}, μ, T) is a system, and $k \in \mathbb{N}_{+} . \forall E \in \mathcal{X}$ with $\mu(E)>0$,

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N} \mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)>0
$$

Szemerédi Systems (SZ Systems)

Multiple Recurrence Theorem (alternative form)

(X, \mathcal{X}, μ, T) is a system, and $k \in \mathbb{N}_{+} . \forall E \in \mathcal{X}$ with $\mu(E)>0$,

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N} \mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)>0
$$

Definition. A system $X=(X, \mathcal{X}, \mu, T)$ is $\mathbf{S Z}$ of level \boldsymbol{k} if

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N} \int_{X} f \cdot T^{n} f \cdot T^{2 n} f \cdots T^{(k-1) n} f \mathrm{~d} \mu>0
$$

whenever $f \in L^{\infty}(X), f \geq 0$, and $\mathbb{E}(f)>0$.

Szemerédi Systems (SZ Systems)

Multiple Recurrence Theorem (alternative form)

(X, \mathcal{X}, μ, T) is a system, and $k \in \mathbb{N}_{+} . \forall E \in \mathcal{X}$ with $\mu(E)>0$,

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N} \mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)>0
$$

Definition. A system $X=(X, \mathcal{X}, \mu, T)$ is $\mathbf{S Z}$ of level \boldsymbol{k} if

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N} \int_{X} f \cdot T^{n} f \cdot T^{2 n} f \cdots T^{(k-1) n} f \mathrm{~d} \mu>0
$$

whenever $f \in L^{\infty}(X), f \geq 0$, and $\mathbb{E}(f)>0$. A system X is $S Z$ if it is $S Z$ of every level.

Szemerédi Systems (SZ Systems)

Multiple Recurrence Theorem (alternative form)

(X, \mathcal{X}, μ, T) is a system, and $k \in \mathbb{N}_{+} . \forall E \in \mathcal{X}$ with $\mu(E)>0$,

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N} \mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)>0
$$

Definition. A system $X=(X, \mathcal{X}, \mu, T)$ is $\mathbf{S Z}$ of level \boldsymbol{k} if

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N} \int_{X} f \cdot T^{n} f \cdot T^{2 n} f \cdots T^{(k-1) n} f \mathrm{~d} \mu>0
$$

whenever $f \in L^{\infty}(X), f \geq 0$, and $\mathbb{E}(f)>0$. A system X is $S Z$ if it is SZ of every level. Ultimate Goal: Every system is SZ.

Ideas of the Proof - Types of Systems

Measure Preserving Systems

(according to the behavior of T)

Ideas of the Proof - Types of Systems

Measure Preserving Systems

(according to the behavior of T)

Ideas of the Proof - Two Extreme Cases

T is "chaotic". If $E \in \mathcal{X}$ is any event in the probability space (X, \mathcal{X}, μ), then $E, T E, T^{2} E, \ldots$ are all independent.

Ideas of the Proof - Two Extreme Cases

T is "chaotic". If $E \in \mathcal{X}$ is any event in the probability space (X, \mathcal{X}, μ), then $E, T E, T^{2} E, \ldots$ are all independent. \Longrightarrow $\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)=\prod_{i=0}^{k-1} \mu\left(T^{i \cdot n} E\right)=\mu(E)^{k}>0$, whenever $\mu(E)>0$. \checkmark

Ideas of the Proof - Two Extreme Cases

T is "chaotic". If $E \in \mathcal{X}$ is any event in the probability space (X, \mathcal{X}, μ), then $E, T E, T^{2} E, \ldots$ are all independent. \Longrightarrow $\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)=\prod_{i=0}^{k-1} \mu\left(T^{i \cdot n} E\right)=\mu(E)^{k}>0$, whenever $\mu(E)>0$. \checkmark
T is periodic. For every $E \in \mathcal{X}$ there is an $r \in \mathbb{N}_{+}$(may depend on E), such that $T^{r} E=E$.

Ideas of the Proof - Two Extreme Cases

T is "chaotic". If $E \in \mathcal{X}$ is any event in the probability space (X, \mathcal{X}, μ), then $E, T E, T^{2} E, \ldots$ are all independent. \Longrightarrow
$\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)=\prod_{i=0}^{k-1} \mu\left(T^{i \cdot n} E\right)=\mu(E)^{k}>0$, whenever $\mu(E)>0$. \checkmark
T is periodic. For every $E \in \mathcal{X}$ there is an $r \in \mathbb{N}_{+}$(may depend on E), such that $T^{r} E=E . \Longrightarrow$
$\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)=\mu(E)>0$, whenever $r \mid n$.

Ideas of the Proof - Two Extreme Cases

T is "chaotic". If $E \in \mathcal{X}$ is any event in the probability space (X, \mathcal{X}, μ), then $E, T E, T^{2} E, \ldots$ are all independent. \Longrightarrow
$\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)=\prod_{i=0}^{k-1} \mu\left(T^{i \cdot n} E\right)=\mu(E)^{k}>0$, whenever $\mu(E)>0$. \checkmark
T is periodic. For every $E \in \mathcal{X}$ there is an $r \in \mathbb{N}_{+}$(may depend on $E)$, such that $T^{r} E=E . \Longrightarrow$
$\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)=\mu(E)>0$, whenever $r \mid n$. \checkmark
Problem. The above assumptions are very restrictive, and give solution only for special cases. We need to weaken them!

Ideas of the Proof - Two Extreme Cases

T is "chaotic". If $E \in \mathcal{X}$ is any event in the probability space (X, \mathcal{X}, μ), then $E, T E, T^{2} E, \ldots$ are all independent. \Longrightarrow
$\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)=\prod_{i=0}^{k-1} \mu\left(T^{i \cdot n} E\right)=\mu(E)^{k}>0$,
whenever $\mu(E)>0$. \checkmark
T is periodic. For every $E \in \mathcal{X}$ there is an $r \in \mathbb{N}_{+}$(may depend on $E)$, such that $T^{r} E=E . \Longrightarrow$
$\mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right)=\mu(E)>0$, whenever $r \mid n$. \checkmark
Problem. The above assumptions are very restrictive, and give solution only for special cases. We need to weaken them! \rightsquigarrow

Weak mixing and Almost Periodic/Compact systems.

Ideas of the Proof - Types of Systems

Measure Preserving Systems

(according to the behavior of T)

Ideas of the Proof - Types of Systems

Measure Preserving Systems

(according to the behavior of T)

Weak Mixing Systems

Intuition. The events $E, T E, T^{2} E, \ldots$ are not independent, but E and $T^{n} E$ become nearly uncorrelated in some sense as $n \rightarrow \infty$.

Weak Mixing Systems

Intuition. The events $E, T E, T^{2} E, \ldots$ are not independent, but E and $T^{n} E$ become nearly uncorrelated in some sense as $n \rightarrow \infty$.
Definition. $v \in V,\left(v_{n}\right)_{n \in \mathbb{N}} \subset V$ normed. $D-\lim _{n \rightarrow \infty} v_{n}=v$, if for any $\varepsilon>0$ we have $\bar{\delta}\left(\left\{n \in \mathbb{N} \mid\left\|v_{n}-v\right\|>\varepsilon\right\}\right)=0$.

Weak Mixing Systems

Intuition. The events $E, T E, T^{2} E, \ldots$ are not independent, but E and $T^{n} E$ become nearly uncorrelated in some sense as $n \rightarrow \infty$.
Definition. $v \in V,\left(v_{n}\right)_{n \in \mathbb{N}} \subset V$ normed. $D-\lim _{n \rightarrow \infty} v_{n}=v$, if for any $\varepsilon>0$ we have $\bar{\delta}\left(\left\{n \in \mathbb{N} \mid\left\|v_{n}-v\right\|>\varepsilon\right\}\right)=0$.
Definition. (X, \mathcal{X}, μ, T) is weak mixing if for any $A, B \in \mathcal{X}$

$$
\underset{n \rightarrow \infty}{\mathrm{D}-\lim _{\infty}} \mu\left(T^{n} A \cap B\right)=\mu(A) \mu(B) . \quad \mid \quad \underset{n \rightarrow \infty}{\mathrm{D}-\lim _{n}}\left\langle T^{n} f, g\right\rangle=\mathbb{E}(f) \mathbb{E}(g)
$$

Weak Mixing Systems

Intuition. The events $E, T E, T^{2} E, \ldots$ are not independent, but E and $T^{n} E$ become nearly uncorrelated in some sense as $n \rightarrow \infty$.
Definition. $v \in V,\left(v_{n}\right)_{n \in \mathbb{N}} \subset V$ normed. D-lim $\lim _{n \rightarrow \infty} \boldsymbol{v}_{n}=v$, if for any $\varepsilon>0$ we have $\bar{\delta}\left(\left\{n \in \mathbb{N} \mid\left\|v_{n}-v\right\|>\varepsilon\right\}\right)=0$.
Definition. (X, \mathcal{X}, μ, T) is weak mixing if for any $A, B \in \mathcal{X}$

$$
\underset{n \rightarrow \infty}{\mathrm{D}-\lim _{n}} \mu\left(T^{n} A \cap B\right)=\mu(A) \mu(B) . \quad \mid \underset{n \rightarrow \infty}{\mathrm{D}-\lim _{n}}\left\langle T^{n} f, g\right\rangle=\mathbb{E}(f) \mathbb{E}(g)
$$

Comparing weak mixing and ergodic systems:

Proposition. Weak mixing \Longrightarrow ergodicity (but not vica versa).
Proposition. $X \mathrm{w} . \mathrm{m} . \Longleftrightarrow X \times X \mathrm{w} . \mathrm{m} . \Longleftrightarrow X \times X$ ergodic. Remark. X ergodic $\nRightarrow X \times X$ ergodic [irrational rotation of S^{1}].

Weak Mixing Functions

Definition. In a system (X, \mathcal{X}, μ, T) a function $f \in L^{2}(X)$ is called weak mixing if $\mathrm{D}-\lim _{n \rightarrow \infty}\left\langle T^{n} f, f\right\rangle=0$.

Weak Mixing Functions

Definition. In a system (X, \mathcal{X}, μ, T) a function $f \in L^{2}(X)$ is called weak mixing if $\mathrm{D}-\lim _{n \rightarrow \infty}\left\langle T^{n} f, f\right\rangle=0$.

Intuition. f is w . m . if the "shifts" $T^{n} f$ eventually become orthogonal to f (for which T displays "mixing" behavior).

Weak Mixing Functions

Definition. In a system (X, \mathcal{X}, μ, T) a function $f \in L^{2}(X)$ is called weak mixing if $\mathrm{D}-\lim _{n \rightarrow \infty}\left\langle T^{n} f, f\right\rangle=0$.

Intuition. f is w. m. if the "shifts" $T^{n} f$ eventually become orthogonal to f (for which T displays "mixing" behavior).

Characterization of $\mathbf{w} . \mathbf{m}$. systems by $\mathbf{w} . \mathrm{m}$. functions: A system (X, \mathcal{X}, μ, T) is weak mixing \Longleftrightarrow every $f \in L^{2}(X)$ with $\mathbb{E}(f)=0$ is weak mixing.

Weak Mixing Functions

Definition. In a system (X, \mathcal{X}, μ, T) a function $f \in L^{2}(X)$ is called weak mixing if $\mathrm{D}-\lim _{n \rightarrow \infty}\left\langle T^{n} f, f\right\rangle=0$.

Intuition. f is w . m . if the "shifts" $T^{n} f$ eventually become orthogonal to f (for which T displays "mixing" behavior).

Characterization of $\mathbf{w} . \mathbf{m}$. systems by \mathbf{w}. \mathbf{m}. functions:
A system (X, \mathcal{X}, μ, T) is weak mixing \Longleftrightarrow every $f \in L^{2}(X)$ with $\mathbb{E}(f)=0$ is weak mixing.

Theorem. Every weak mixing system is SZ .

Ideas of the Proof - Types of Systems

Measure Preserving Systems

(according to the behavior of T)

Ideas of the Proof - Types of Systems

Measure Preserving Systems

(according to the behavior of T)

Compact Systems \& Almost Periodic Functions

Definition. A function $f \in L^{2}(X)$ is almost periodic if for every $\varepsilon>0$, the set $S_{\varepsilon}=\left\{n \in \mathbb{Z} \mid\left\|f-T^{n} f\right\|_{2}<\varepsilon\right\}$ has bounded gaps, which means $\exists N>0: S_{\varepsilon} \cap[m, m+N] \neq \emptyset$ for all $m \in \mathbb{Z}$.

Compact Systems \& Almost Periodic Functions

Definition. A function $f \in L^{2}(X)$ is almost periodic if for every $\varepsilon>0$, the set $S_{\varepsilon}=\left\{n \in \mathbb{Z} \mid\left\|f-T^{n} f\right\|_{2}<\varepsilon\right\}$ has bounded gaps, which means $\exists N>0: S_{\varepsilon} \cap[m, m+N] \neq \emptyset$ for all $m \in \mathbb{Z}$.

Definition. A system (X, \mathcal{X}, μ, T) is called compact if every $f \in L^{2}(X)$ is almost periodic.

Compact Systems \& Almost Periodic Functions

Definition. A function $f \in L^{2}(X)$ is almost periodic if for every $\varepsilon>0$, the set $S_{\varepsilon}=\left\{n \in \mathbb{Z} \mid\left\|f-T^{n} f\right\|_{2}<\varepsilon\right\}$ has bounded gaps, which means $\exists N>0: S_{\varepsilon} \cap[m, m+N] \neq \emptyset$ for all $m \in \mathbb{Z}$.

Definition. A system (X, \mathcal{X}, μ, T) is called compact if every $f \in L^{2}(X)$ is almost periodic.

Theorem. Every compact system is SZ.

Ideas of the Proof - Types of Systems

Measure Preserving Systems

(according to the behavior of T)

Ideas of the Proof - Types of Systems

Measure Preserving Systems

(according to the behavior of T)

Ideas of the Proof - Types of Systems

Measure Preserving Systems

(according to the behavior of T)

Weak Mixing \& Almost Periodic Components

Notation. $W M(X):=\left\{f \in L^{2}(X) \mid f\right.$ is weak mixing $\}$ $A P(X):=\left\{f \in L^{2}(X) \mid f\right.$ is almost periodic $\}$

Weak Mixing \& Almost Periodic Components

Notation. $W M(X):=\left\{f \in L^{2}(X) \mid f\right.$ is weak mixing $\}$

$$
A P(X):=\left\{f \in L^{2}(X) \mid f \text { is almost periodic }\right\}
$$

Key Proposition. For any system, $L^{2}(X)=W M(X) \oplus A P(X)$ as an orthogonal direct sum of Hilbert spaces.

Weak Mixing \& Almost Periodic Components

Notation. $W M(X):=\left\{f \in L^{2}(X) \mid f\right.$ is weak mixing $\}$

$$
A P(X):=\left\{f \in L^{2}(X) \mid f \text { is almost periodic }\right\}
$$

Key Proposition. For any system, $L^{2}(X)=W M(X) \oplus A P(X)$ as an orthogonal direct sum of Hilbert spaces.
Proof ingredients.

- $A P(X) \subseteq L^{2}(X)$ is a closed T-invariant subspace.
- $f \in W M(X) \Longleftrightarrow\langle f, g\rangle=0$ for all $g \in A P(X)$.

Weak Mixing \& Almost Periodic Components

Notation. $W M(X):=\left\{f \in L^{2}(X) \mid f\right.$ is weak mixing $\}$

$$
A P(X):=\left\{f \in L^{2}(X) \mid f \text { is almost periodic }\right\}
$$

Key Proposition. For any system, $L^{2}(X)=W M(X) \oplus A P(X)$ as an orthogonal direct sum of Hilbert spaces.
Proof ingredients.

- $A P(X) \subseteq L^{2}(X)$ is a closed T-invariant subspace.
- $f \in W M(X) \Longleftrightarrow\langle f, g\rangle=0$ for all $g \in A P(X)$.

Message. Unless a system is completely "pseudorandom" $(\longleftrightarrow W M)$, it must contain some "structured" ($\rightsquigarrow A P)$ piece.

Weak Mixing \& Almost Periodic Components

Notation. $W M(X):=\left\{f \in L^{2}(X) \mid f\right.$ is weak mixing $\}$

$$
A P(X):=\left\{f \in L^{2}(X) \mid f \text { is almost periodic }\right\}
$$

Key Proposition. For any system, $L^{2}(X)=W M(X) \oplus A P(X)$ as an orthogonal direct sum of Hilbert spaces.
Proof ingredients.

- $A P(X) \subseteq L^{2}(X)$ is a closed T-invariant subspace.
- $f \in W M(X) \Longleftrightarrow\langle f, g\rangle=0$ for all $g \in A P(X)$.

Message. Unless a system is completely "pseudorandom" $(\leadsto W M)$, it must contain some "structured" ($\leadsto \rightarrow A P)$ piece.

Now we are ready to prove Roth's Theorem.

Roth's Theorem - Statement of the Theorem

Theorem (Roth). Every subset A of \mathbb{Z} with $\bar{\delta}(A)>0$ contains a 3-term arithmetic progression.

Roth's Theorem - Statement of the Theorem

Theorem (Roth). Every subset A of \mathbb{Z} with $\bar{\delta}(A)>0$ contains a 3-term arithmetic progression. \qquad
Theorem (Roth). Every system is SZ of level 3. In other words, let (X, \mathcal{X}, μ, T) be a system. Then for every $f \in L^{\infty}(X)$ with $f \geq 0$ and $\mathbb{E}(f)>0$, we have

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} f \cdot T^{n} f \cdot T^{2 n} f \mathrm{~d} \mu>0
$$

Roth's Theorem - Statement of the Theorem

Theorem (Roth). Every subset A of \mathbb{Z} with $\bar{\delta}(A)>0$ contains a 3-term arithmetic progression. \qquad
Theorem (Roth). Every system is SZ of level 3. In other words, let (X, \mathcal{X}, μ, T) be a system. Then for every $f \in L^{\infty}(X)$ with $f \geq 0$ and $\mathbb{E}(f)>0$, we have

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} f \cdot T^{n} f \cdot T^{2 n} f \mathrm{~d} \mu>0
$$

Intuition. We get rid of the weak mixing part of the system, and project it onto its almost periodic piece, which is known to be SZ, as it is a compact system.

Roth's Theorem - Key Ingredients

Proposition (\uparrow). $L^{2}(X)=W M(X) \oplus A P(X)$ as an orthogonal direct sum of Hilbert spaces. Therefore each $f \in L^{2}(X)$ can be written as $f=f_{W M}+f_{A P} \in W M(X) \oplus A P(X)$.

Proposition (\&). Let (X, \mathcal{X}, μ, T) be an ergodic system. Then for any $f, g \in L^{\infty}(X)$, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1}\left(T^{n} f T^{2 n} g-T^{n} f_{A P} T^{2 n} g_{A P}\right)=0 \text { in } L^{2} .
$$

[The proof relies on von Neumann's mean Ergodic Theorem.]

Theorem (■). Every compact system is SZ.

Roth's Theorem - Proof

Let $f \in L^{\infty}(X)$ with $f \geq 0$ and $\mathbb{E}(f)>0$.

Roth's Theorem - Proof

Let $f \in L^{\infty}(X)$ with $f \geq 0$ and $\mathbb{E}(f)>0$.
Via ergodic decomposition we may assume ergodicity of X.

Roth's Theorem - Proof

Let $f \in L^{\infty}(X)$ with $f \geq 0$ and $\mathbb{E}(f)>0$.
Via ergodic decomposition we may assume ergodicity of X.

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} f \cdot T^{n} f \cdot T^{2 n} f \mathrm{~d} \mu
$$

Roth's Theorem - Proof

Let $f \in L^{\infty}(X)$ with $f \geq 0$ and $\mathbb{E}(f)>0$.
Via ergodic decomposition we may assume ergodicity of X.

$$
\begin{aligned}
& \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} f \cdot T^{n} f \cdot T^{2 n} f \mathrm{~d} \mu \stackrel{\text { थे }}{=} \\
= & \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} f \cdot T^{n} f_{A P} \cdot T^{2 n} f_{A P} \mathrm{~d} \mu
\end{aligned}
$$

Roth's Theorem - Proof

Let $f \in L^{\infty}(X)$ with $f \geq 0$ and $\mathbb{E}(f)>0$.
Via ergodic decomposition we may assume ergodicity of X.

$$
\begin{aligned}
& \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} f \cdot T^{n} f \cdot T^{2 n} f \mathrm{~d} \mu \stackrel{\stackrel{\otimes}{=}}{=} \\
= & \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} f \cdot T^{n} f_{A P} \cdot T^{2 n} f_{A P} \mathrm{~d} \mu \stackrel{\stackrel{N}{=}}{=} \\
= & \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X}\left(f_{W M}+f_{A P}\right) \cdot T^{n} f_{A P} \cdot T^{2 n} f_{A P} \mathrm{~d} \mu
\end{aligned}
$$

Roth's Theorem - Proof

Let $f \in L^{\infty}(X)$ with $f \geq 0$ and $\mathbb{E}(f)>0$.
Via ergodic decomposition we may assume ergodicity of X.

$$
\begin{aligned}
& \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} f \cdot T^{n} f \cdot T^{2 n} f \mathrm{~d} \mu \stackrel{\stackrel{\text { ® }}{=}}{=} \\
= & \operatorname{liminin}_{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} f \cdot T^{n} f_{A P} \cdot T^{2 n} f_{A P} \mathrm{~d} \mu \stackrel{\stackrel{N}{=}}{=} \\
= & \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X}\left(f_{W M}+f_{A P}\right) \cdot T^{n} f_{A P} \cdot T^{2 n} f_{A P} \mathrm{~d} \mu \stackrel{\oplus}{=} \\
= & \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} f_{A P} \cdot T^{n} f_{A P} \cdot T^{2 n} f_{A P} \mathrm{~d} \mu>0,
\end{aligned}
$$

as $\mathbb{E}\left(f_{A P}\right)=\mathbb{E}\left(\mathbb{E}\left(f \mid \mathcal{X}_{A P}\right)\right)=\mathbb{E}(f)>0$ (see Appendix).

References

圊 Klaus F．Roth：
On Certain Sets of Integers．
J．London Math．Soc．28（1953），104－109．
E
Endre Szemerédi：
On Sets of Integers Containing no k Elements in Arithmetic Progression．
Acta Arith．27（1975），199－245．
國 Peter Walters：
An Introduction to Ergodic Theory（GTM 79）． Springer，New York， 1982.

囯 Yufei Zhao：
Szemerédi＇s Theorem via Ergodic Theory． Cambridge University， 2011.

What About the Set of Primes?

Let $\mathcal{P}:=\{$ nonnegative primes $\} \subset \mathbb{Z}$, and $\pi(x):=\mathcal{P} \cap[0, x]$.
Claim (elementary). $\lim _{x \rightarrow \infty} \pi(x) / x=0 . \Longrightarrow \bar{\delta}(\mathcal{P})=\mathbf{0}$.
Prime Number Theorem. $\pi(x) / x \sim \log (x)^{-1} \quad($ as $x \rightarrow \infty)$.
Question. Longest arithmetic progression containing only primes?

Theorem (B. Green and T. Tao, 2004)

For any $k \in \mathbb{N}_{+}$there exists a k-term arithmetic progression in \mathcal{P}.
Szemerédi's Theorem is a key ingredient of the proof.
Example (B. Perichon, J. Wróblewski, and G. Reynolds, 2010) $43,142,746,595,714,191+23,681,770 \cdot 223,092,870 \cdot n$, for $n=0$ to $25 . \Longrightarrow 26$-term arithmetic progression of primes.

Ergodic Decomposition: An Example

Goal. Decompose an arbitrary system into ergodic components.
Why? Ergodic theorems have simple forms for ergodic systems.
Example (a special finite case, but works in general)
$X=\{1,2,3,4,5,6\}, \mathcal{X}=2^{X}, \mu:$ uniform, $T=(23)(456) \in S_{X}$.
$\Longrightarrow T(1)=1, T(2)=3, T(3)=2, T(4)=5, T(5)=6, T(6)=4$.
NOT ergodic: $E=\{1\}$ is T-invariant, but $\mu(E)=1 / 6 \notin\{0,1\}$.
BUT consider: $\mu_{1}=\mathbb{1}_{\{1\}}, \mu_{2}=(1 / 2) \cdot \mathbb{1}_{\{2,3\}}, \mu_{3}=(1 / 3) \cdot \mathbb{1}_{\{4,5,6\}}$.
Note: $\left(X, \mathcal{X}, \mu_{i}, T\right)$ IS ergodic for $i=1,2,3$. Moreover, we have

$$
\mu=\frac{1}{6} \mu_{1}+\frac{1}{3} \mu_{2}+\frac{1}{2} \mu_{3} \Longrightarrow \quad \begin{gathered}
\text { weighted average of } \\
\text { ergodic measures. }
\end{gathered}
$$

Szemerédi \Longrightarrow Furstenberg

Lemma. Let (X, \mathcal{X}, μ, T) be a system, and $E \in \mathcal{X}$ with $\mu(E)>0$.
$\Longrightarrow \exists F \in \mathcal{X}, \mu(F)>0$, s. t. $\forall x \in F: \bar{\delta}\left(\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right)>0$.

Szemerédi \Longrightarrow Furstenberg

Lemma. Let (X, \mathcal{X}, μ, T) be a system, and $E \in \mathcal{X}$ with $\mu(E)>0$.
$\Longrightarrow \exists F \in \mathcal{X}, \mu(F)>0$, s. t. $\forall x \in F: \bar{\delta}\left(\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right)>0$.
Fix a system $(X, \mathcal{X}, \mu, T), E \in \mathcal{X}$ with $\mu(E)>0$, and $k \in \mathbb{N}_{+}$.

Szemerédi \Longrightarrow Furstenberg

Lemma. Let (X, \mathcal{X}, μ, T) be a system, and $E \in \mathcal{X}$ with $\mu(E)>0$.
$\Longrightarrow \exists F \in \mathcal{X}, \mu(F)>0$, s. t. $\forall x \in F: \bar{\delta}\left(\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right)>0$.
Fix a system $(X, \mathcal{X}, \mu, T), E \in \mathcal{X}$ with $\mu(E)>0$, and $k \in \mathbb{N}_{+}$.

- $\mathcal{A} \mathcal{P}_{k}:=\left\{\boldsymbol{a}=\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z} \mid \boldsymbol{a}\right.$ is arithmetic progression $\}$.

Szemerédi \Longrightarrow Furstenberg

Lemma. Let (X, \mathcal{X}, μ, T) be a system, and $E \in \mathcal{X}$ with $\mu(E)>0$.
$\Longrightarrow \exists F \in \mathcal{X}, \mu(F)>0$, s. t. $\forall x \in F: \bar{\delta}\left(\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right)>0$.
Fix a system $(X, \mathcal{X}, \mu, T), E \in \mathcal{X}$ with $\mu(E)>0$, and $k \in \mathbb{N}_{+}$.

- $\mathcal{A} \mathcal{P}_{k}:=\left\{\boldsymbol{a}=\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z} \mid \boldsymbol{a}\right.$ is arithmetic progression $\}$.
- $B_{a}:=\left\{x \in X \mid T^{a_{i}} x \in E, 1 \leq i \leq k\right\} ; B_{k}:=\bigcup_{a \in \mathcal{A} \mathcal{P}_{k}} B_{a}$.

Szemerédi \Longrightarrow Furstenberg

Lemma. Let (X, \mathcal{X}, μ, T) be a system, and $E \in \mathcal{X}$ with $\mu(E)>0$.
$\Longrightarrow \exists F \in \mathcal{X}, \mu(F)>0$, s. t. $\forall x \in F: \bar{\delta}\left(\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right)>0$.
Fix a system $(X, \mathcal{X}, \mu, T), E \in \mathcal{X}$ with $\mu(E)>0$, and $k \in \mathbb{N}_{+}$.

- $\mathcal{A} \mathcal{P}_{k}:=\left\{\boldsymbol{a}=\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z} \mid \boldsymbol{a}\right.$ is arithmetic progression $\}$.
- $B_{a}:=\left\{x \in X \mid T^{a_{i}} x \in E, 1 \leq i \leq k\right\} ; B_{k}:=\bigcup_{a \in \mathcal{A} \mathcal{P}_{k}} B_{a}$.

Note: $B_{k}=\left\{x \in X \mid\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right.$ contains some $\left.\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}\right\}$.

Szemerédi \Longrightarrow Furstenberg

Lemma. Let (X, \mathcal{X}, μ, T) be a system, and $E \in \mathcal{X}$ with $\mu(E)>0$.
$\Longrightarrow \exists F \in \mathcal{X}, \mu(F)>0$, s. t. $\forall x \in F: \bar{\delta}\left(\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right)>0$.
Fix a system $(X, \mathcal{X}, \mu, T), E \in \mathcal{X}$ with $\mu(E)>0$, and $k \in \mathbb{N}_{+}$.

- $\mathcal{A} \mathcal{P}_{k}:=\left\{\boldsymbol{a}=\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z} \mid \boldsymbol{a}\right.$ is arithmetic progression $\}$.
- $B_{a}:=\left\{x \in X \mid T^{a_{i}} x \in E, 1 \leq i \leq k\right\} ; B_{k}:=\bigcup_{a \in \mathcal{A} \mathcal{P}_{k}} B_{a}$.

Note: $B_{k}=\left\{x \in X \mid\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right.$ contains some $\left.\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}\right\}$.
Choose $F \in \mathcal{X}$ as in the Lemma.

Szemerédi \Longrightarrow Furstenberg

Lemma. Let (X, \mathcal{X}, μ, T) be a system, and $E \in \mathcal{X}$ with $\mu(E)>0$.
$\Longrightarrow \exists F \in \mathcal{X}, \mu(F)>0$, s. t. $\forall x \in F: \bar{\delta}\left(\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right)>0$.
Fix a system $(X, \mathcal{X}, \mu, T), E \in \mathcal{X}$ with $\mu(E)>0$, and $k \in \mathbb{N}_{+}$.

- $\mathcal{A} \mathcal{P}_{k}:=\left\{\boldsymbol{a}=\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z} \mid \boldsymbol{a}\right.$ is arithmetic progression $\}$.
- $B_{a}:=\left\{x \in X \mid T^{a_{i}} x \in E, 1 \leq i \leq k\right\} ; B_{k}:=\bigcup_{a \in \mathcal{A} \mathcal{P}_{k}} B_{a}$.

Note: $B_{k}=\left\{x \in X \mid\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right.$ contains some $\left.\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}\right\}$.
Choose $F \in \mathcal{X}$ as in the Lemma. By Szemerédi, $\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}$ contains some $\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}$ for each $x \in F$.

Szemerédi \Longrightarrow Furstenberg

Lemma. Let (X, \mathcal{X}, μ, T) be a system, and $E \in \mathcal{X}$ with $\mu(E)>0$. $\Longrightarrow \exists F \in \mathcal{X}, \mu(F)>0$, s. t. $\forall x \in F: \bar{\delta}\left(\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right)>0$.

Fix a system $(X, \mathcal{X}, \mu, T), E \in \mathcal{X}$ with $\mu(E)>0$, and $k \in \mathbb{N}_{+}$.

- $\mathcal{A} \mathcal{P}_{k}:=\left\{\boldsymbol{a}=\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z} \mid \boldsymbol{a}\right.$ is arithmetic progression $\}$.
- $B_{a}:=\left\{x \in X \mid T^{a_{i}} x \in E, 1 \leq i \leq k\right\} ; B_{k}:=\bigcup_{a \in \mathcal{A} \mathcal{P}_{k}} B_{a}$.

Note: $B_{k}=\left\{x \in X \mid\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right.$ contains some $\left.\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}\right\}$.
Choose $F \in \mathcal{X}$ as in the Lemma. By Szemerédi, $\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}$ contains some $\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}$ for each $x \in F . \Longrightarrow F \subseteq B_{k}=\bigcup_{\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}} B_{a}$, a countable union.

Szemerédi \Longrightarrow Furstenberg

Lemma. Let (X, \mathcal{X}, μ, T) be a system, and $E \in \mathcal{X}$ with $\mu(E)>0$. $\Longrightarrow \exists F \in \mathcal{X}, \mu(F)>0$, s. t. $\forall x \in F: \bar{\delta}\left(\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right)>0$.

Fix a system $(X, \mathcal{X}, \mu, T), E \in \mathcal{X}$ with $\mu(E)>0$, and $k \in \mathbb{N}_{+}$.

- $\mathcal{A} \mathcal{P}_{k}:=\left\{\boldsymbol{a}=\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z} \mid \boldsymbol{a}\right.$ is arithmetic progression $\}$.
- $B_{a}:=\left\{x \in X \mid T^{a_{i}} x \in E, 1 \leq i \leq k\right\} ; B_{k}:=\bigcup_{a \in \mathcal{A} \mathcal{P}_{k}} B_{a}$.

Note: $B_{k}=\left\{x \in X \mid\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right.$ contains some $\left.\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}\right\}$.
Choose $F \in \mathcal{X}$ as in the Lemma. By Szemerédi, $\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}$ contains some $\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}$ for each $x \in F . \Longrightarrow F \subseteq B_{k}=\bigcup_{\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}} B_{a}$, a countable union. \Longrightarrow Since $\mu(F)>0, \exists \boldsymbol{b} \in \mathcal{A} \mathcal{P}_{k}: \mu\left(B_{\boldsymbol{b}}\right)>0$.

Szemerédi \Longrightarrow Furstenberg

Lemma. Let (X, \mathcal{X}, μ, T) be a system, and $E \in \mathcal{X}$ with $\mu(E)>0$. $\Longrightarrow \exists F \in \mathcal{X}, \mu(F)>0$, s. t. $\forall x \in F: \bar{\delta}\left(\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right)>0$.

Fix a system $(X, \mathcal{X}, \mu, T), E \in \mathcal{X}$ with $\mu(E)>0$, and $k \in \mathbb{N}_{+}$.

- $\mathcal{A} \mathcal{P}_{k}:=\left\{\boldsymbol{a}=\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z} \mid \boldsymbol{a}\right.$ is arithmetic progression $\}$.
- $B_{a}:=\left\{x \in X \mid T^{a_{i}} x \in E, 1 \leq i \leq k\right\} ; B_{k}:=\bigcup_{a \in \mathcal{A} \mathcal{P}_{k}} B_{a}$.

Note: $B_{k}=\left\{x \in X \mid\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right.$ contains some $\left.\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}\right\}$.
Choose $F \in \mathcal{X}$ as in the Lemma. By Szemerédi, $\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}$ contains some $\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}$ for each $x \in F . \Longrightarrow F \subseteq B_{k}=\bigcup_{\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}} B_{\mathbf{a}}$, a countable union. \Longrightarrow Since $\mu(F)>0, \exists \boldsymbol{b} \in \mathcal{A} \mathcal{P}_{k}: \mu\left(B_{\boldsymbol{b}}\right)>0$.
$\Longrightarrow T^{c} B_{\boldsymbol{b}} \subseteq E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E$ for some $c \in \mathbb{Z}$ and $n \in \mathbb{N}_{+}$.

Szemerédi \Longrightarrow Furstenberg

Lemma. Let (X, \mathcal{X}, μ, T) be a system, and $E \in \mathcal{X}$ with $\mu(E)>0$. $\Longrightarrow \exists F \in \mathcal{X}, \mu(F)>0$, s. t. $\forall x \in F: \bar{\delta}\left(\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right)>0$.

Fix a system $(X, \mathcal{X}, \mu, T), E \in \mathcal{X}$ with $\mu(E)>0$, and $k \in \mathbb{N}_{+}$.

- $\mathcal{A} \mathcal{P}_{k}:=\left\{\boldsymbol{a}=\left(a_{1}, \ldots, a_{k}\right) \subset \mathbb{Z} \mid \boldsymbol{a}\right.$ is arithmetic progression $\}$.
- $B_{a}:=\left\{x \in X \mid T^{a_{i}} x \in E, 1 \leq i \leq k\right\} ; B_{k}:=\bigcup_{a \in \mathcal{A} \mathcal{P}_{k}} B_{a}$.

Note: $B_{k}=\left\{x \in X \mid\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}\right.$ contains some $\left.\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}\right\}$.
Choose $F \in \mathcal{X}$ as in the Lemma. By Szemerédi, $\left\{n \in \mathbb{Z} \mid T^{n} x \in E\right\}$ contains some $\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}$ for each $x \in F . \Longrightarrow F \subseteq B_{k}=\bigcup_{\boldsymbol{a} \in \mathcal{A} \mathcal{P}_{k}} B_{\mathrm{a}}$, a countable union. \Longrightarrow Since $\mu(F)>0, \exists \boldsymbol{b} \in \mathcal{A P}_{k}: \mu\left(B_{\boldsymbol{b}}\right)>0$.
$\Longrightarrow T^{c} B_{\boldsymbol{b}} \subseteq E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E$ for some $c \in \mathbb{Z}$ and $n \in \mathbb{N}_{+}$.
$\Longrightarrow \mu\left(E \cap T^{n} E \cap \cdots \cap T^{(k-1) n} E\right) \geq \mu\left(T^{c} B_{\boldsymbol{b}}\right)=\mu\left(B_{\boldsymbol{b}}\right)>0$.

Compact Factors

Definition. \mathcal{Y} is T-invariant, if $T E, T^{-1} E \in \mathcal{Y}$ for any $E \in \mathcal{Y}$.
Definition. If $X=(X, \mathcal{X}, \mu, T)$ is a system, $X^{\prime}=\left(X, \mathcal{X}^{\prime}, \mu, T\right)$ is called a factor of X if \mathcal{X}^{\prime} is a T-invariant sub- σ-algebra of \mathcal{X}.
A factor X^{\prime} is trivial, if $\mu(E) \in\{0,1\}$ for all $E \in \mathcal{X}^{\prime}$.
It is compact, if X^{\prime} is a compact measure preserving system.

Theorem

Let X be a system. Exactly one of the followings is true:
(1) X is weak mixing ("pseudorandomness");
(2) X has a nontrivial compact factor ("structure").

Kronecker Factors

Notation. If $X=(X, \mathcal{X}, \mu, T), \mathcal{X}_{A P}:=\left\{A \in X \mid \mathbb{1}_{A} \in A P(X)\right\}$.
Claim. $\mathcal{X}_{A P}$ is a T-invariant sub- σ-algebra of \mathcal{X}. Therefore $\left(X, \mathcal{X}_{A P}, \mu, T\right)$ is a factor of X, called Kronecker factor.
Remark. The Kronecker is the maximal compact factor of X.
Proposition. Let (X, \mathcal{X}, μ, T) be a system, and $f \in L^{2}(X, \mathcal{X}, \mu)$.
(1) $f \in A P(X)$ iff f is $\mathcal{X}_{A P}$-measurable: $A P(X)=L^{2}\left(X, \mathcal{X}_{A P}, \mu\right)$.
(2) $f \in W M(X)$ iff $\mathbb{E}\left(f \mid \mathcal{X}_{A P}\right)=0$ a. e.

3 (4) We can write $f=f_{A P}+f_{W M}$, where $f_{A P}:=\mathbb{E}\left(f \mid \mathcal{X}_{A P}\right) \in A P(X)$, and $f_{W M}:=f-f_{A P} \in W M(X)$.

