Szemerédi's Theorem via Ergodic Theory Rotation Project Final Presentation

Kristóf Huszár (PhD student) Project supervised by: László Erdős

Institute of Science and Technology Austria

July 24, 2014

Kristóf Huszár Szemerédi's Theorem via Ergodic Theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ideas of the Proof WM & AP Roth's Theorem

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_+$ there exists a monochromatic k-term arithmetic progression.

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_+$ there exists a monochromatic k-term arithmetic progression.

Definition. $(a_1, \ldots, a_k) \subset \mathbb{Z}$ ordered k-tuple is called a k-term arithmetic progression, if $a_{i+1} - a_i = d$ for all $i = 1, \ldots, k - 1$.

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_+$ there exists a monochromatic k-term arithmetic progression.

Definition. $(a_1, \ldots, a_k) \subset \mathbb{Z}$ ordered k-tuple is called a k-term arithmetic progression, if $a_{i+1} - a_i = d$ for all $i = 1, \ldots, k - 1$.

Example

 $\dots, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, \dots$

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_+$ there exists a monochromatic k-term arithmetic progression.

Definition. $(a_1, \ldots, a_k) \subset \mathbb{Z}$ ordered k-tuple is called a k-term arithmetic progression, if $a_{i+1} - a_i = d$ for all $i = 1, \ldots, k - 1$.

Example

..., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, ...

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_+$ there exists a monochromatic k-term arithmetic progression.

Definition. $(a_1, \ldots, a_k) \subset \mathbb{Z}$ ordered k-tuple is called a k-term arithmetic progression, if $a_{i+1} - a_i = d$ for all $i = 1, \ldots, k - 1$.

Example

..., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, ...

k = 1: trivial;

Kristóf Huszár Szemerédi's Theorem via Ergodic Theory

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_+$ there exists a monochromatic k-term arithmetic progression.

Definition. $(a_1, \ldots, a_k) \subset \mathbb{Z}$ ordered k-tuple is called a k-term arithmetic progression, if $a_{i+1} - a_i = d$ for all $i = 1, \ldots, k - 1$.

Example

..., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, ...

k = 1: trivial; k = 2: trivial, e. g. $(6,7), (8,9), (10,18), \ldots$

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_+$ there exists a monochromatic k-term arithmetic progression.

Definition. $(a_1, \ldots, a_k) \subset \mathbb{Z}$ ordered k-tuple is called a k-term arithmetic progression, if $a_{i+1} - a_i = d$ for all $i = 1, \ldots, k - 1$.

Example

..., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, ...

k = 1: trivial; k = 2: trivial, e. g. (6,7), (8,9), (10,18), ... k = 3: non-trivial, e. g. (10,15,20);

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_+$ there exists a monochromatic k-term arithmetic progression.

Definition. $(a_1, \ldots, a_k) \subset \mathbb{Z}$ ordered k-tuple is called a k-term arithmetic progression, if $a_{i+1} - a_i = d$ for all $i = 1, \ldots, k - 1$.

Example

..., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, ...

k = 1: trivial; k = 2: trivial, e. g. (6,7), (8,9), (10,18), ... k = 3: non-trivial, e. g. (10,15,20); k = 5: (5,9,13,17,21).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶

Historical Overview of Results

Theorem (B. L. van der Waerden, 1927)

If we color \mathbb{Z} with finitely many colors, then for any $k \in \mathbb{N}_+$ there exists a monochromatic k-term arithmetic progression.

Definition. $(a_1, \ldots, a_k) \subset \mathbb{Z}$ ordered k-tuple is called a k-term arithmetic progression, if $a_{i+1} - a_i = d$ for all $i = 1, \ldots, k - 1$.

Example

..., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, ...

k = 1: trivial; k = 2: trivial, e. g. (6,7), (8,9), (10,18), ... k = 3: non-trivial, e. g. (10,15,20); k = 5: (5,9,13,17,21).

Conjecture of P. Erdős & P. Turán (1936). True reason: at least one of the color classes has positive **upper density**.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆

Ideas of the Proof WM & AP Roth's Theorem

Historical Overview of Results

Definition. The upper density $\overline{\delta}(A)$ of a set $A \subseteq \mathbb{Z}$ is defined as

$$\overline{\delta}(A) := \limsup_{n \to \infty} \frac{1}{2n+1} |A \cap \{-n, -n+1, \dots, n-1, n\}|.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへぐ

Ideas of the Proof WM & AP Roth's Theorem

Historical Overview of Results

Definition. The upper density $\overline{\delta}(A)$ of a set $A \subseteq \mathbb{Z}$ is defined as

$$\overline{\delta}(A) := \limsup_{n \to \infty} \frac{1}{2n+1} |A \cap \{-n, -n+1, \dots, n-1, n\}|.$$

Conjecture of P. Erdős & P. Turán (1936). If $A \subseteq \mathbb{Z}$, such that $\overline{\delta}(A) > 0 \Rightarrow A$ contains a *k*-term arithmetic progression for each *k*.

Ideas of the Proof WM & AP Roth's Theorem

Historical Overview of Results

Definition. The upper density $\overline{\delta}(A)$ of a set $A \subseteq \mathbb{Z}$ is defined as

$$\overline{\delta}(A) := \limsup_{n \to \infty} \frac{1}{2n+1} |A \cap \{-n, -n+1, \dots, n-1, n\}|.$$

Conjecture of P. Erdős & P. Turán (1936). If $A \subseteq \mathbb{Z}$, such that $\overline{\delta}(A) > 0 \Rightarrow A$ contains a *k*-term arithmetic progression for each *k*.

Theorem (K. F. Roth, 1953; E. Szemerédi, 1969 and 1975)

- K. F. Roth: *k* = 3 (1953)
- E. Szemerédi: k = 4 (1969), $\forall k \in \mathbb{N}_+$ (1975).

Roth: Fields Medal (1958) Szemerédi: Abel Prize (2012)

Ideas of the Proof WM & AP Roth's Theorem

Historical Overview of Results

Definition. The upper density $\overline{\delta}(A)$ of a set $A \subseteq \mathbb{Z}$ is defined as

$$\overline{\delta}(A) := \limsup_{n \to \infty} \frac{1}{2n+1} |A \cap \{-n, -n+1, \dots, n-1, n\}|.$$

Conjecture of P. Erdős & P. Turán (1936). If $A \subseteq \mathbb{Z}$, such that $\overline{\delta}(A) > 0 \Rightarrow A$ contains a *k*-term arithmetic progression for each *k*.

Theorem (K. F. Roth, 1953; E. Szemerédi, 1969 and 1975)

- K. F. Roth: *k* = 3 (1953)
- E. Szemerédi: k = 4 (1969), $\forall k \in \mathbb{N}_+$ (1975).

Roth: Fields Medal (1958) Szemerédi: Abel Prize (2012) ↓ Szemerédi's Theorem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ideas of the Proof WM & AP Roth's Theorem

Historical Overview of Results

Definition. The upper density $\overline{\delta}(A)$ of a set $A \subseteq \mathbb{Z}$ is defined as

$$\overline{\delta}(A) := \limsup_{n \to \infty} \frac{1}{2n+1} |A \cap \{-n, -n+1, \dots, n-1, n\}|.$$

Conjecture of P. Erdős & P. Turán (1936). If $A \subseteq \mathbb{Z}$, such that $\overline{\delta}(A) > 0 \Rightarrow A$ contains a *k*-term arithmetic progression for each *k*.

Theorem (K. F. Roth, 1953; E. Szemerédi, 1969 and 1975)

- K. F. Roth: k = 3 (1953) \leftarrow Goal of the talk.
- E. Szemerédi: k = 4 (1969), $\forall k \in \mathbb{N}_+$ (1975).

Roth: Fields Medal (1958) Szemerédi: Abel Prize (2012) ↓ Szemerédi's Theorem

Ideas of the Proof WM & AP Roth's Theorem

Roadmap of Szemerédi's Original Proof

202

E. Szemerédi

The diagram represents an approximate flow chart for the accompanying proof of Szemerédi's theorem. The various symbols have the following meanings: Fk = Facetk, Lk = Lemmak, T = Theorem, C = Corollary, D = Definitions of T_{g_1} , P_{e_2} , P_{e_3} , P_{e_4} , P_{e_5}

Kristóf Huszár Szemerédi's Theorem via Ergodic Theory

Ideas of the Proof WM & AP Roth's Theorem

A Surprising Connection

In 1977 H. Furstenberg gave a new proof via ergodic theory.

Additive Combinatorics $\xleftarrow{connection}$ Dynamical Systems

A Surprising Connection

In 1977 H. Furstenberg gave a new proof via ergodic theory.

Additive Combinatorics $\xleftarrow{connection}$ Dynamical Systems

Outline of the Talk

- **Ergodic Theory.** Basic concepts, notation, ergodic theorems, ergodic decomposition.
- Correspondence Principle. Converting problems in additive combinatorics into problems about dynamical systems.
- Weak Mixing & Compact Systems. Two extreme cases ("pseudorandom" & "structured" systems).
- **3 Roth's Theorem** (k = 3). Putting the pieces together.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A Surprising Connection

In 1977 H. Furstenberg gave a new proof via ergodic theory.

Additive Combinatorics $\xleftarrow{connection}$ Dynamical Systems

Outline of the Talk

- **Ergodic Theory.** Basic concepts, notation, ergodic theorems, ergodic decomposition.
- Correspondence Principle. Converting problems in additive combinatorics into problems about dynamical systems.
- Weak Mixing & Compact Systems. Two extreme cases ("pseudorandom" & "structured" systems).
- **3 Roth's Theorem** (k = 3). Putting the pieces together.

Remark. We mainly follow the exposition of the essay <u>Szemerédi's Theorem</u> via Ergodic Theory by Yufei Zhao (2011).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ideas of the Proof WM & AP Roth's Theorem

Dynamical Systems Basic Concepts Ergodic Theorems Ergodic Decomposition

Ergodic Theory I. – Dynamical Systems

Kristóf Huszár Szemerédi's Theorem via Ergodic Theory

Dynamical Systems Basic Concepts

Ergodic Theorems Ergodic Decomposition

Ergodic Theory I. – Dynamical Systems

Definition. X some set, $T: X \to X$ (shift map). The pair (X, T) is called a **dynamical system**. [We assume T is invertible.]

Dynamical Systems Basic Concepts

Ergodic Theorems Ergodic Decomposition

Ergodic Theory I. – Dynamical Systems

Definition. X some set, $T: X \to X$ (shift map). The pair (X, T) is called a **dynamical system**. [We assume T is invertible.]

Question. What is the **evolution** of the system, as we iterate T?

Ergodic Theorems Ergodic Decomposition

Ergodic Theory I. – Dynamical Systems

Definition. X some set, $T: X \to X$ (shift map). The pair (X, T) is called a **dynamical system**. [We assume T is invertible.] **Question.** What is the **evolution** of the system, as we iterate T?

Notation. $T^n := T \circ \cdots \circ T$, $T^{-n} := T^{-1} \circ \cdots \circ T^{-1}$ (*n* times). $T^n E := \{T^n(x) \mid x \in E\}; T^n f(x) := f(T^{-n}(x)), \text{ if } f : X \to X.$

Dynamical Systems Basic Concepts Ergodic Theorems Ergodic Decomposition

Ergodic Theory I. – Dynamical Systems

Definition. X some set, $T: X \to X$ (shift map). The pair (X, T) is called a **dynamical system**. [We assume T is invertible.]

Question. What is the **evolution** of the system, as we iterate *T*? **Notation.** $T^n := T \circ \cdots \circ T$, $T^{-n} := T^{-1} \circ \cdots \circ T^{-1}$ (*n* times). $T^n E := \{T^n(x) \mid x \in E\}; T^n f(x) := f(T^{-n}(x)), \text{ if } f : X \to X.$

Topological Dynamical Systems

X is a compact metric space, $T: X \rightarrow X$ is homeomorphism. \Rightarrow **Topological Dynamics**

Ergodic Theorems Ergodic Decomposition

Ergodic Theory I. – Dynamical Systems

Definition. X some set, $T: X \to X$ (shift map). The pair (X, T) is called a **dynamical system**. [We assume T is invertible.] **Question.** What is the **evolution** of the system, as we iterate T? **Notation.** $T^n := T \circ \cdots \circ T$, $T^{-n} := T^{-1} \circ \cdots \circ T^{-1}$ (*n* times). $T^n E := \{T^n(x) \mid x \in E\}; T^n f(x) := f(T^{-n}(x)), \text{ if } f: X \to X.$

Topological Dynamical Systems

X is a compact metric space, $T: X \rightarrow X$ is homeomorphism. \Rightarrow **Topological Dynamics**

Measure Preserving Systems

$$(X, \mathcal{X}, \mu, T)$$
, where

- X compact metric space,
- $\mathcal{X} \sigma$ -algebra of measurable sets,
- μ prob. measure: $\mu(X) = 1$,
- *T* measure preserving: $\forall E \in \mathcal{X}$, $\forall n \in \mathbb{Z} : \mu(T^n E) = \mu(E).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

⇒ Ergodic Theory

Ergodic Theorems Ergodic Decomposition

Ergodic Theory I. – Dynamical Systems

Definition. X some set, $T: X \to X$ (shift map). The pair (X, T) is called a **dynamical system**. [We assume T is invertible.] **Question.** What is the **evolution** of the system, as we iterate T? **Notation.** $T^n := T \circ \cdots \circ T$, $T^{-n} := T^{-1} \circ \cdots \circ T^{-1}$ (*n* times). $T^n E := \{T^n(x) \mid x \in E\}; T^n f(x) := f(T^{-n}(x)), \text{ if } f: X \to X.$

Topological Dynamical Systems

X is a compact metric space, $T: X \rightarrow X$ is homeomorphism. \Rightarrow **Topological Dynamics**

In this talk: system := measure preserving system. All functions are measurable.

Measure Preserving Systems

$$(X, \mathcal{X}, \mu, T)$$
, where

- X compact metric space,
- $\mathcal{X} \sigma$ -algebra of measurable sets,
- μ prob. measure: $\mu(X) = 1$,
- T measure preserving: $\forall E \in \mathcal{X}$, $\forall n \in \mathbb{Z} \colon \mu(T^n E) = \mu(E).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\Rightarrow \textbf{Ergodic Theory}$

Dynamical Systems Basic Concepts Ergodic Theorems Ergodic Decomposition

Ergodic Theory I. – Dynamical Systems

Definition. X some set, $T: X \to X$ (shift map). The pair (X, T) is called a **dynamical system**. [We assume T is invertible.] **Question.** What is the **evolution** of the system, as we iterate T? **Notation.** $T^n := T \circ \cdots \circ T$, $T^{-n} := T^{-1} \circ \cdots \circ T^{-1}$ (n times).

 $T^{n}E := \{T^{n}(x) \mid x \in E\}; T^{n}f(x) := f(T^{-n}(x)), \text{ if } f : X \to X.$

Topological Dynamical Systems

X is a compact metric space, $T: X \rightarrow X$ is homeomorphism. \Rightarrow **Topological Dynamics**

In this talk: system := measure preserving system. All functions are measurable.

Measure Preserving Systems

$$(X, \mathcal{X}, \mu, T)$$
, where

- X compact metric space,
- $\mathcal{X} \sigma$ -algebra of measurable sets,
- μ prob. measure: $\mu(X) = 1$,
- T measure preserving: $\forall E \in \mathcal{X}$, $\forall n \in \mathbb{Z} \colon \mu(T^n E) = \mu(E).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\Rightarrow \textbf{Ergodic Theory}$

Ergodic Theorems Ergodic Decomposition

Ergodic Theory I. – Dynamical Systems

Definition. X some set, $T: X \to X$ (shift map). The pair (X, T) is called a **dynamical system**. [We assume T is invertible.] **Question.** What is the **evolution** of the system, as we iterate T? **Notation.** $T^n := T \circ \cdots \circ T$, $T^{-n} := T^{-1} \circ \cdots \circ T^{-1}$ (*n* times). $T^n E := \{T^n(x) \mid x \in E\}; T^n f(x) := f(T^{-n}(x))$, if $f: X \to X$.

Topological Dynamical Systems

X is a compact metric space, $T: X \rightarrow X$ is homeomorphism. \Rightarrow **Topological Dynamics**

In this talk: system := measure preserving system. All functions are measurable.

Measure Preserving Systems

$$(X, \mathcal{X}, \mu, T)$$
, where

- X compact metric space,
- $\mathcal{X} \sigma$ -algebra of measurable sets,
- μ prob. measure: $\mu(X) = 1$,
- T measure preserving: $\forall E \in \mathcal{X}$, $\forall n \in \mathbb{Z} \colon \mu(T^n E) = \mu(E).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\Rightarrow \textbf{Ergodic Theory}$

Ideas of the Proof WM & AP Roth's Theorem

Dynamical Systems Basic Concepts Ergodic Theorems Ergodic Decomposition

Ergodic Theory II. – Basic Concepts

Notation. $\mathcal{X}^{\mathsf{T}} := \{ E \in \mathcal{X} \mid TE = E \}$ (sub- σ -algebra of \mathcal{X}).

Kristóf Huszár Szemerédi's Theorem via Ergodic Theory

Ideas of the Proof WM & AP Roth's Theorem

Dynamical Systems Basic Concepts Ergodic Theorems Ergodic Decomposition

Ergodic Theory II. – Basic Concepts

Notation.
$$\mathcal{X}^{\mathsf{T}} := \{ E \in \mathcal{X} \mid \mathsf{T}E = E \}$$
 (sub- σ -algebra of \mathcal{X}).

Definition I. A system $X = (X, \mathcal{X}, \mu, T)$ is called **ergodic** if for all $E \in \mathcal{X}^T$ we have $\mu(E) = 0$ or $\mu(E) = 1$.

Dynamical Systems Basic Concepts Ergodic Theorems Ergodic Decomposition

Ergodic Theory II. – Basic Concepts

Notation.
$$\mathcal{X}^{\mathsf{T}} := \{ E \in \mathcal{X} \mid TE = E \}$$
 (sub- σ -algebra of \mathcal{X}).

Definition I. A system $X = (X, \mathcal{X}, \mu, T)$ is called **ergodic** if for all $E \in \mathcal{X}^T$ we have $\mu(E) = 0$ or $\mu(E) = 1$.

Definition II. [...] **ergodic** if every f s. t. Tf = f is constant a. e.

Dynamical Systems Basic Concepts Ergodic Theorems Ergodic Decomposition

Ergodic Theory II. – Basic Concepts

Notation.
$$\mathcal{X}^{\mathcal{T}} := \{ E \in \mathcal{X} \mid TE = E \}$$
 (sub- σ -algebra of \mathcal{X}).

Definition I. A system $X = (X, \mathcal{X}, \mu, T)$ is called **ergodic** if for all $E \in \mathcal{X}^T$ we have $\mu(E) = 0$ or $\mu(E) = 1$.

Definition II. [...] **ergodic** if every f s. t. Tf = f is constant a. e.

$$\begin{split} L^2 &:= L^2(X, \mathcal{X}, \mu) := \left\{ f \colon X \to \mathbb{R} \mid \int_X |f|^2 \, \mathrm{d}\mu < \infty \right\} / \sim, \text{ where} \\ f \sim g \iff f = g \text{ a. e. } L^2 \text{ is a Hilbert space; } \langle f, g \rangle &:= \int_X fg \, \mathrm{d}\mu. \end{split}$$

Dynamical Systems Basic Concepts Ergodic Theorems Ergodic Decomposition

Ergodic Theory II. – Basic Concepts

Notation.
$$\mathcal{X}^{T} := \{ E \in \mathcal{X} \mid TE = E \}$$
 (sub- σ -algebra of \mathcal{X}).

Definition I. A system $X = (X, \mathcal{X}, \mu, T)$ is called **ergodic** if for all $E \in \mathcal{X}^T$ we have $\mu(E) = 0$ or $\mu(E) = 1$.

Definition II. [...] **ergodic** if every f s. t. Tf = f is constant a. e.

$$\begin{split} L^2 &:= L^2(X, \mathcal{X}, \mu) := \left\{ f \colon X \to \mathbb{R} \mid \int_X |f|^2 \, \mathrm{d}\mu < \infty \right\} / \sim, \text{ where} \\ f \sim g \iff f = g \text{ a. e. } L^2 \text{ is a Hilbert space; } \langle f, g \rangle &:= \int_X fg \, \mathrm{d}\mu. \end{split}$$

 $\mathcal{Y} \subseteq \mathcal{X}$ is a σ -alg. $\Longrightarrow L^2(X, \mathcal{Y}, \mu) \leq L^2(X, \mathcal{X}, \mu)$ closed subspace.

Ideas of the Proof WM & AP Roth's Theorem

Dynamical Systems Basic Concepts Ergodic Theorems Ergodic Decomposition

Ergodic Theory II. – Basic Concepts

Notation.
$$\mathcal{X}^{\mathcal{T}} := \{ E \in \mathcal{X} \mid TE = E \}$$
 (sub- σ -algebra of \mathcal{X}).

Definition I. A system $X = (X, \mathcal{X}, \mu, T)$ is called **ergodic** if for all $E \in \mathcal{X}^T$ we have $\mu(E) = 0$ or $\mu(E) = 1$.

Definition II. [...] **ergodic** if every f s. t. Tf = f is constant a. e.

$$\begin{split} L^2 &:= L^2(X, \mathcal{X}, \mu) := \left\{ f \colon X \to \mathbb{R} \mid \int_X |f|^2 \, \mathrm{d}\mu < \infty \right\} / \sim, \text{ where} \\ f \sim g \iff f = g \text{ a. e. } L^2 \text{ is a Hilbert space}; \ \langle f, g \rangle &:= \int_X fg \, \mathrm{d}\mu. \end{split}$$

 $\mathcal{Y} \subseteq \mathcal{X}$ is a σ -alg. $\Longrightarrow L^2(X, \mathcal{Y}, \mu) \leq L^2(X, \mathcal{X}, \mu)$ closed subspace. The orthogonal projection $\mathbb{E}(\cdot|\mathcal{Y}): L^2(X, \mathcal{X}, \mu) \to L^2(X, \mathcal{Y}, \mu)$ is called conditional expectation.

Dynamical Systems Basic Concepts Ergodic Theorems Ergodic Decomposition

Ergodic Theory II. – Basic Concepts

Notation.
$$\mathcal{X}^{\mathcal{T}} := \{ E \in \mathcal{X} \mid TE = E \}$$
 (sub- σ -algebra of \mathcal{X}).

Definition I. A system $X = (X, \mathcal{X}, \mu, T)$ is called **ergodic** if for all $E \in \mathcal{X}^T$ we have $\mu(E) = 0$ or $\mu(E) = 1$.

Definition II. [...] ergodic if every f s. t. Tf = f is constant a. e.

$$\begin{split} L^2 &:= L^2(X, \mathcal{X}, \mu) := \left\{ f \colon X \to \mathbb{R} \mid \int_X |f|^2 \, \mathrm{d}\mu < \infty \right\} / \sim, \text{ where} \\ f \sim g \iff f = g \text{ a. e. } L^2 \text{ is a Hilbert space; } \langle f, g \rangle &:= \int_X fg \, \mathrm{d}\mu. \end{split}$$

 $\mathcal{Y} \subseteq \mathcal{X}$ is a σ -alg. $\Longrightarrow L^2(X, \mathcal{Y}, \mu) \leq L^2(X, \mathcal{X}, \mu)$ closed subspace. The orthogonal projection $\mathbb{E}(\cdot|\mathcal{Y}) \colon L^2(X, \mathcal{X}, \mu) \to L^2(X, \mathcal{Y}, \mu)$ is called conditional expectation.

Proposition. If a system X is ergodic, then $\mathbb{E}(f|\mathcal{X}^T) = \mathbb{E}(f)$, where $\mathbb{E}(f) = \int_X f \, d\mu$ is the usual expectation.

Ideas of the Proof WM & AP Roth's Theorem

Dynamical Systems Basic Concepts Ergodic Theorems Ergodic Decomposition

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ergodic Theory III. – Ergodic Theorems

"General Form" of Ergodic Theorems.

$$\mathsf{Av}_N(T^n f) := \frac{1}{N} \sum_{n=0}^{N-1} T^n f \quad \xrightarrow{(N \to \infty)} \quad \mathbb{E}(f | \mathcal{X}^T)$$

Definition. Av_N($T^n f$): time average; $\mathbb{E}(f)$: space average.
Ideas of the Proof WM & AP Roth's Theorem

Dynamical Systems Basic Concepts Ergodic Theorems Ergodic Decomposition

Ergodic Theory III. – Ergodic Theorems

"General Form" of Ergodic Theorems.

$$\mathsf{Av}_{N}(T^{n}f) := \frac{1}{N} \sum_{n=0}^{N-1} T^{n}f \quad \xrightarrow{(N \to \infty)} \quad \mathbb{E}(f | \mathcal{X}^{T})$$

Definition. Av_N($T^n f$): **time average**; $\mathbb{E}(f)$: **space average**. **Proposition.** If a system X is ergodic, then $\mathbb{E}(f|\mathcal{X}^T) = \mathbb{E}(f)$.

Ideas of the Proof WM & AP Roth's Theorem

Dynamical Systems Basic Concepts Ergodic Theorems Ergodic Decomposition

Ergodic Theory III. – Ergodic Theorems

"General Form" of Ergodic Theorems.

$$\operatorname{Av}_{N}(T^{n}f) := \frac{1}{N} \sum_{n=0}^{N-1} T^{n}f \quad \xrightarrow{(N \to \infty)} \quad \mathbb{E}(f | \mathcal{X}^{T})$$

Definition. Av_N($T^n f$): **time average**; $\mathbb{E}(f)$: **space average**. **Proposition.** If a system X is ergodic, then $\mathbb{E}(f|\mathcal{X}^T) = \mathbb{E}(f)$.

Theorem (von Neumann mean ergodic theorem)

Let
$$X = (X, \mathcal{X}, \mu, T)$$
 be a system, and $f \in L^2(X, \mathcal{X}, \mu)$. Then
 $\operatorname{Av}_N(T^n f) \longrightarrow \mathbb{E}(f | \mathcal{X}^T)$ in L^2
as $M \to \infty$ if X is sured in then the limit equals $\mathbb{E}(f)$.

as $N \to \infty$. If X is ergodic, then the limit equals $\mathbb{E}(f)$.

Ideas of the Proof WM & AP Roth's Theorem

Dynamical Systems Basic Concepts Ergodic Theorems Ergodic Decomposition

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶

Ergodic Theory III. – Ergodic Theorems

"General Form" of Ergodic Theorems.

$$\operatorname{Av}_{N}(T^{n}f) := \frac{1}{N} \sum_{n=0}^{N-1} T^{n}f \quad \xrightarrow{(N \to \infty)} \quad \mathbb{E}(f | \mathcal{X}^{T})$$

Definition. Av_N($T^n f$): **time average**; $\mathbb{E}(f)$: **space average**. **Proposition.** If a system X is ergodic, then $\mathbb{E}(f|\mathcal{X}^T) = \mathbb{E}(f)$.

Theorem (von Neumann mean ergodic theorem)

Let
$$X = (X, \mathcal{X}, \mu, T)$$
 be a system, and $f \in L^2(X, \mathcal{X}, \mu)$. Then
 $Av_N(T^n f) \longrightarrow \mathbb{E}(f | \mathcal{X}^T)$ in L^2 (\Rightarrow also weakly)
as $N \to \infty$. If X is ergodic, then the limit equals $\mathbb{E}(f)$.

Ergodic Theorems Ergodic Decomposition

Ergodic Theory IV. – Ergodic Decomposition

Goal. Decompose an arbitrary system into ergodic components.

Ergodic Theorems Ergodic Decomposition

Ergodic Theory IV. – Ergodic Decomposition

Goal. Decompose an arbitrary system into **ergodic components**. **Why?** Ergodic theorems have **simple** forms for ergodic systems.

Ergodic Theorems Ergodic Decomposition

Ergodic Theory IV. – Ergodic Decomposition

Goal. Decompose an arbitrary system into ergodic components.

Why? Ergodic theorems have simple forms for ergodic systems.

Theorem (Ergodic Decomposition)

Let (X, \mathcal{X}, μ, T) be a system. Let $\mathcal{E}(X)$ denote the set of ergodic measures on X. There exists a probability measure ρ_{μ} on $\mathcal{E}(X)$ such that

$$\mu = \int_{\mathcal{E}(X)} \nu \rho_{\mu}(\mathsf{d}\nu).$$

Ergodic Theorems Ergodic Decomposition

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ergodic Theory IV. – Ergodic Decomposition

Goal. Decompose an arbitrary system into ergodic components.

Why? Ergodic theorems have simple forms for ergodic systems.

Theorem (Ergodic Decomposition)

Let (X, \mathcal{X}, μ, T) be a system. Let $\mathcal{E}(X)$ denote the set of ergodic measures on X. There exists a probability measure ρ_{μ} on $\mathcal{E}(X)$ such that

$$\mu = \int_{\mathcal{E}(X)} \nu \rho_{\mu}(\mathsf{d}\nu).$$

Finite decomposition. $\mu = \sum_{i=1}^{n} \alpha_i \mu_i$, with $\sum_{i=1}^{n} \alpha_i = 1$, $\alpha_i \ge 0$, where the system $(X, \mathcal{X}, \mu_i, T)$ is ergodic for i = 1, ..., n.

Ergodic Theorems Ergodic Decomposition

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ergodic Theory IV. – Ergodic Decomposition

Goal. Decompose an arbitrary system into ergodic components.

Why? Ergodic theorems have simple forms for ergodic systems.

Theorem (Ergodic Decomposition)

Let (X, \mathcal{X}, μ, T) be a system. Let $\mathcal{E}(X)$ denote the set of ergodic measures on X. There exists a probability measure ρ_{μ} on $\mathcal{E}(X)$ such that

$$\mu = \int_{\mathcal{E}(X)} \nu \rho_{\mu}(\mathsf{d}\nu).$$

Finite decomposition. $\mu = \sum_{i=1}^{n} \alpha_i \mu_i$, with $\sum_{i=1}^{n} \alpha_i = 1$, $\alpha_i \ge 0$, where the system $(X, \mathcal{X}, \mu_i, T)$ is ergodic for i = 1, ..., n.

 \implies We can assume ergodicity of systems in certain types of proofs (including the proof of Szemerédi's Theorem).

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

Correspondence Principle I. – Bernoulli Systems

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory.

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

Correspondence Principle I. – Bernoulli Systems

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory. \implies We define an equivalent problem for systems!

Multiple Recurrence Proof of Correspondence

Correspondence Principle I. – Bernoulli Systems

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory. \implies We define an equivalent problem for systems! **Bernoulli systems.** $X = \mathcal{P}(\mathbb{Z})$ (the power set of \mathbb{Z}), and $T: X \to X$ is defined as $T(B) = B + 1 = \{b + 1 \mid b \in B \subseteq \mathbb{Z}\}$.

Correspondence Principle I. – Bernoulli Systems

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory. \implies We define an equivalent problem for systems! **Bernoulli systems.** $X = \mathcal{P}(\mathbb{Z})$ (the power set of \mathbb{Z}), and $T: X \to X$ is defined as $T(B) = B + 1 = \{b+1 \mid b \in B \subseteq \mathbb{Z}\}$.

 X ≈ {0,1}^ℤ, which we equip with the product topology (each {0,1} is a discrete space).

Correspondence Principle I. – Bernoulli Systems

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory. \implies We define an equivalent problem for systems! **Bernoulli systems.** $X = \mathcal{P}(\mathbb{Z})$ (the power set of \mathbb{Z}), and $T: X \to X$ is defined as $T(B) = B + 1 = \{b + 1 \mid b \in B \subseteq \mathbb{Z}\}$.

- $X \cong \{0,1\}^{\mathbb{Z}}$, which we equip with the product topology (each $\{0,1\}$ is a discrete space).
- By **Tychonoff's Theorem** X is compact. [Main reason for choosing $\{0,1\}^{\mathbb{Z}}$ instead of Z.]

Correspondence Principle I. – Bernoulli Systems

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory. \implies We define an equivalent problem for systems! **Bernoulli systems.** $X = \mathcal{P}(\mathbb{Z})$ (the power set of \mathbb{Z}), and $T: X \to X$ is defined as $T(B) = B + 1 = \{b + 1 \mid b \in B \subseteq \mathbb{Z}\}$.

- $X \cong \{0,1\}^{\mathbb{Z}}$, which we equip with the product topology (each $\{0,1\}$ is a discrete space).
- By **Tychonoff's Theorem** X is compact. [Main reason for choosing $\{0,1\}^{\mathbb{Z}}$ instead of Z.]
- X is also metrizable.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶

Correspondence Principle I. – Bernoulli Systems

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory. \implies We define an equivalent problem for systems! **Bernoulli systems.** $X = \mathcal{P}(\mathbb{Z})$ (the power set of \mathbb{Z}), and $T: X \to X$ is defined as $T(B) = B + 1 = \{b+1 \mid b \in B \subseteq \mathbb{Z}\}$.

- X ≈ {0,1}^ℤ, which we equip with the product topology (each {0,1} is a discrete space).
- By Tychonoff's Theorem X is compact.
 [Main reason for choosing {0,1}^ℤ instead of ℤ.]
- X is also metrizable.
- \implies We have a topological dynamical system.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Correspondence Principle I. – Bernoulli Systems

Goal. Transforming Szemerédi's Theorem into a problem in ergodic theory. \implies We define an equivalent problem for systems! **Bernoulli systems.** $X = \mathcal{P}(\mathbb{Z})$ (the power set of \mathbb{Z}), and $T: X \to X$ is defined as $T(B) = B + 1 = \{b + 1 \mid b \in B \subseteq \mathbb{Z}\}$.

- X ≈ {0,1}^ℤ, which we equip with the product topology (each {0,1} is a discrete space).
- By **Tychonoff's Theorem** X is compact. [Main reason for choosing $\{0,1\}^{\mathbb{Z}}$ instead of Z.]
- X is also metrizable.
- \implies We have a topological dynamical system.

Idea. Working in an appropriate subspace of X, we shall turn it into a **measure space** via a T-invariant measure μ . \rightsquigarrow **Goal**.

Ideas of the Proof WM & AP Roth's Theorem

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

Correspondence Principle II. – Arithmetic Progressions

 \exists arithmetic progressions in $A \subseteq \mathbb{Z}$ with $\overline{\delta}(A) > 0$.

 \exists arithmetic progressions in $E \subseteq X$ with $\mu(E) > 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Kristóf Huszár Szemerédi's Theorem via Ergodic Theory

Ideas of the Proof WM & AP Roth's Theorem

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

Correspondence Principle II. – Arithmetic Progressions

 \exists arithmetic progressions in $A \subseteq \mathbb{Z}$ with $\overline{\delta}(A) > 0$.

∃ arithmetic progressions in $E \subseteq X$ with $\mu(E) > 0$.

k-term arithmetic progression: $x, T^n x, T^{2n} x, \ldots, T^{(k-1)n} x \in E$.

Ideas of the Proof WM & AP Roth's Theorem

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

Correspondence Principle II. – Arithmetic Progressions

 \exists arithmetic progressions in $A \subseteq \mathbb{Z}$ with $\overline{\delta}(A) > 0$.

∃ arithmetic progressions in $E \subseteq X$ with $\mu(E) > 0$.

k-term arithmetic progression: $x, T^n x, T^{2n} x, \ldots, T^{(k-1)n} x \in E$.

Question. Given a system, $E \in \mathcal{X}$ with $\mu(E) > 0$, and $k \in \mathbb{N}_+$, can we show $E \cap T^n E \cap \cdots \cap T^{(k-1)n} \neq \emptyset$ always for some n > 0?

Ideas of the Proof WM & AP Roth's Theorem

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

Correspondence Principle II. – Arithmetic Progressions

 \exists arithmetic progressions in $A \subseteq \mathbb{Z}$ with $\overline{\delta}(A) > 0$.

∃ arithmetic progressions in $E \subseteq X$ with $\mu(E) > 0$.

k-term arithmetic progression: $x, T^n x, T^{2n} x, \ldots, T^{(k-1)n} x \in E$.

Question. Given a system, $E \in \mathcal{X}$ with $\mu(E) > 0$, and $k \in \mathbb{N}_+$, can we show $E \cap T^n E \cap \cdots \cap T^{(k-1)n} \neq \emptyset$ always for some n > 0?

We shall prove more: $\mu(E \cap T^n E \cap \cdots \cap T^{(k-1)n}) > 0. \implies$ This would give an affirmative answer for the above question.

Ideas of the Proof WM & AP Roth's Theorem

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

Correspondence Principle II. – Arithmetic Progressions

 \exists arithmetic progressions in $A \subseteq \mathbb{Z}$ with $\overline{\delta}(A) > 0$.

∃ arithmetic progressions in $E \subseteq X$ with $\mu(E) > 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

k-term arithmetic progression: $x, T^n x, T^{2n} x, \ldots, T^{(k-1)n} x \in E$.

Question. Given a system, $E \in \mathcal{X}$ with $\mu(E) > 0$, and $k \in \mathbb{N}_+$, can we show $E \cap T^n E \cap \cdots \cap T^{(k-1)n} \neq \emptyset$ always for some n > 0?

We shall prove more: $\mu(E \cap T^n E \cap \cdots \cap T^{(k-1)n}) > 0. \implies$ This would give an affirmative answer for the above question.

Note. For k = 2, the claim is a trivial also in this setting. (Also compare with: **Poincaré Recurrence Theorem**.)

Ideas of the Proof WM & AP Roth's Theorem

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Correspondence Principle III. – Multiple Recurrence

Ideas of the Proof WM & AP Roth's Theorem

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

$Furstenberg \implies Szemerédi$

Fix $A \subseteq \mathbb{Z}$ with $\overline{\delta}(A) > 0$.

Kristóf Huszár Szemerédi's Theorem via Ergodic Theory

Ideas of the Proof WM & AP Roth's Theorem

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

$Furstenberg \Longrightarrow Szemerédi$

Fix $A \subseteq \mathbb{Z}$ with $\overline{\delta}(A) > 0$. Represent $A \leftrightarrow a \in \{0, 1\}^{\mathbb{Z}}$ in the Bernoulli system $(\{0, 1\}^{\mathbb{Z}}, T)$, where $T \leftrightarrow (B \mapsto B + 1)$.

Ideas of the Proof WM & AP Roth's Theorem

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

$Furstenberg \Longrightarrow Szemerédi$

Fix $A \subseteq \mathbb{Z}$ with $\overline{\delta}(A) > 0$. Represent $A \leftrightarrow a \in \{0, 1\}^{\mathbb{Z}}$ in the Bernoulli system $(\{0, 1\}^{\mathbb{Z}}, T)$, where $T \leftrightarrow (B \mapsto B + 1)$. Let $X := \overline{\{T^n a \mid n \in \mathbb{Z}\}}$, and $E = \{b \in X \mid b_0 = 1\}$.

Ideas of the Proof WM & AP Roth's Theorem

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

$Furstenberg \Longrightarrow Szemerédi$

Fix $A \subseteq \mathbb{Z}$ with $\overline{\delta}(A) > 0$. Represent $A \leftrightarrow a \in \{0, 1\}^{\mathbb{Z}}$ in the Bernoulli system $(\{0, 1\}^{\mathbb{Z}}, T)$, where $T \leftrightarrow (B \mapsto B + 1)$. Let $X := \overline{\{T^n a \mid n \in \mathbb{Z}\}}$, and $E = \{b \in X \mid b_0 = 1\}$. If there was a μ *T*-invariant measure on *X*, s. t. $\mu(E) > 0$, then by Furstenberg we would get $\mu(E \cap T^n E \cap \cdots \cap T^{(k-1)n}E) > 0$ for some $n \in \mathbb{N}_+$.

Introduction Ergodic Theory Correspondence Principle

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

$Furstenberg \Longrightarrow Szemerédi$

Fix $A \subseteq \mathbb{Z}$ with $\overline{\delta}(A) > 0$. Represent $A \iff a \in \{0,1\}^{\mathbb{Z}}$ in the Bernoulli system $(\{0,1\}^{\mathbb{Z}}, T)$, where $T \iff (B \mapsto B+1)$. Let $X := \overline{\{T^n a \mid n \in \mathbb{Z}\}}$, and $E = \{b \in X \mid b_0 = 1\}$. If there was a μ *T*-invariant measure on *X*, s. t. $\mu(E) > 0$, then by Furstenberg we would get $\mu(E \cap T^n E \cap \cdots \cap T^{(k-1)n}E) > 0$ for some $n \in \mathbb{N}_+$. $\Longrightarrow \emptyset \neq E \cap T^n E \cap \cdots \cap T^{(k-1)n}E \ni T^{-m}a$ for some $m \in \mathbb{Z}$.

Introduction Ergodic Theory Correspondence Principle

Ideas of the Proof WM & AP Roth's Theorem

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

$Furstenberg \Longrightarrow Szemerédi$

Fix $A \subseteq \mathbb{Z}$ with $\overline{\delta}(A) > 0$. Represent $A \iff a \in \{0, 1\}^{\mathbb{Z}}$ in the Bernoulli system $(\{0, 1\}^{\mathbb{Z}}, T)$, where $T \iff (B \mapsto B + 1)$. Let $X := \overline{\{T^n a \mid n \in \mathbb{Z}\}}$, and $E = \{b \in X \mid b_0 = 1\}$. If there was a μ *T*-invariant measure on *X*, s. t. $\mu(E) > 0$, then by Furstenberg we would get $\mu(E \cap T^n E \cap \cdots \cap T^{(k-1)n} E) > 0$ for some $n \in \mathbb{N}_+$. $\Longrightarrow \emptyset \neq E \cap T^n E \cap \cdots \cap T^{(k-1)n} E \ni T^{-m} a$ for some $m \in \mathbb{Z}$. Then $(T^{-m} a)_0 = (T^{-n-m} a)_0 = \cdots = (T^{-(k-1)n-m} a)_0 = 1$.

Introduction Ergodic Theory Correspondence Principle

Ideas of the Proof WM & AP Roth's Theorem

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$Furstenberg \Longrightarrow Szemerédi$

Fix $A \subseteq \mathbb{Z}$ with $\overline{\delta}(A) > 0$. Represent $A \iff a \in \{0,1\}^{\mathbb{Z}}$ in the Bernoulli system $(\{0,1\}^{\mathbb{Z}}, T)$, where $T \iff (B \mapsto B+1)$. Let $X := \overline{\{T^n a \mid n \in \mathbb{Z}\}}$, and $E = \{b \in X \mid b_0 = 1\}$. If there was a μ *T*-invariant measure on *X*, s. t. $\mu(E) > 0$, then by Furstenberg we would get $\mu(E \cap T^n E \cap \cdots \cap T^{(k-1)n} E) > 0$ for some $n \in \mathbb{N}_+$. $\Longrightarrow \emptyset \neq E \cap T^n E \cap \cdots \cap T^{(k-1)n} E \ni T^{-m} a$ for some $m \in \mathbb{Z}$. Then $\underbrace{(T^{-m} a)_0}_{m \in A} = \underbrace{(T^{-n-m} a)_0}_{n+m \in A} = \cdots = \underbrace{(T^{-(k-1)n-m} a)_0}_{(k-1)n+m \in A} = 1$.

Introduction Ergodic Theory Correspondence Principle

Ideas of the Proof WM & AP Roth's Theorem

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$Furstenberg \Longrightarrow Szemerédi$

Fix $A \subseteq \mathbb{Z}$ with $\overline{\delta}(A) > 0$. Represent $A \leftrightarrow a \in \{0, 1\}^{\mathbb{Z}}$ in the Bernoulli system ($\{0,1\}^{\mathbb{Z}}, T$), where $T \iff (B \mapsto B+1)$. Let $X := \{ T^n a \mid n \in \mathbb{Z} \}$, and $E = \{ b \in X \mid b_0 = 1 \}$. If there was a μ *T*-invariant measure on *X*, s. t. $\mu(E) > 0$, then by **Furstenberg** we would get $\mu(E \cap T^n E \cap \cdots \cap T^{(k-1)n}E) > 0$ for some $n \in \mathbb{N}_+$. $\Longrightarrow \emptyset \neq E \cap T^n E \cap \cdots \cap T^{(k-1)n} E \ni T^{-m} a$ for some $m \in \mathbb{Z}$. Then $(\underline{T^{-m}a})_0 = (\underline{T^{-n-m}a})_0 = \cdots = (\underline{T^{-(k-1)n-m}a})_0 = 1.$ $m \in A$ $n + m \in A$ $(k-1)n + m \in A$ **Existence.** $\mu_N := \frac{1}{2N+1} \sum_{\ldots}^{N} \delta_{T^n a}$.

Introduction Ergodic Theory Correspondence Principle

Bernoulli Systems Arithmetic Progressions Multiple Recurrence Proof of Correspondence

$Furstenberg \Longrightarrow Szemerédi$

Fix $A \subseteq \mathbb{Z}$ with $\overline{\delta}(A) > 0$. Represent $A \leftrightarrow a \in \{0, 1\}^{\mathbb{Z}}$ in the Bernoulli system ($\{0,1\}^{\mathbb{Z}}, T$), where $T \iff (B \mapsto B+1)$. Let $X := \overline{\{T^n a \mid n \in \mathbb{Z}\}}$, and $E = \{b \in X \mid b_0 = 1\}$. If there was a μ T-invariant measure on X, s. t. $\mu(E) > 0$, then by **Furstenberg** we would get $\mu(E \cap T^n E \cap \cdots \cap T^{(k-1)n}E) > 0$ for some $n \in \mathbb{N}_+$. $\Longrightarrow \emptyset \neq E \cap T^n E \cap \cdots \cap T^{(k-1)n} E \ni T^{-m} a$ for some $m \in \mathbb{Z}$. Then $(\underline{T^{-m}a})_0 = (\underline{T^{-n-m}a})_0 = \cdots = (\underline{T^{-(k-1)n-m}a})_0 = 1.$ $m \in A$ $n+m \in A$ $(k-1)n+m \in A$ **Existence.** $\mu_N := \frac{1}{2N+1} \sum_{n=1}^{N} \delta_{T^n a}$. **Homework:** The sequence $(\mu_N)_{N \in \mathbb{N}}$ has some *T*-invariant weak limit μ , for which $\mu(E) > 0$. [Use the assumption $\overline{\delta}(A) > 0$ & the **Banach–Alaoglu Theorem**.] < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ideas of the Proof WM & AP Roth's Theorem

Szemerédi Systems (SZ Systems)

Multiple Recurrence Theorem (alternative form)

 (X, \mathcal{X}, μ, T) is a system, and $k \in \mathbb{N}_+$. $\forall E \in \mathcal{X}$ with $\mu(E) > 0$,

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N}\mu\left(E\cap T^{n}E\cap\cdots\cap T^{(k-1)n}E\right)>0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ideas of the Proof WM & AP Roth's Theorem

Szemerédi Systems (SZ Systems)

Multiple Recurrence Theorem (alternative form)

 (X, \mathcal{X}, μ, T) is a system, and $k \in \mathbb{N}_+$. $\forall E \in \mathcal{X}$ with $\mu(E) > 0$,

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N}\mu\left(E\cap T^{n}E\cap\cdots\cap T^{(k-1)n}E\right)>0.$$

Definition. A system $X = (X, \mathcal{X}, \mu, T)$ is **SZ of level** *k* if

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^N\int_X f\cdot T^nf\cdot T^{2n}f\cdots T^{(k-1)n}f\,\mathrm{d}\mu>0,$$

whenever $f \in L^{\infty}(X)$, $f \ge 0$, and $\mathbb{E}(f) > 0$.

Ideas of the Proof WM & AP Roth's Theorem

Szemerédi Systems (SZ Systems)

Multiple Recurrence Theorem (alternative form)

 (X, \mathcal{X}, μ, T) is a system, and $k \in \mathbb{N}_+$. $\forall E \in \mathcal{X}$ with $\mu(E) > 0$,

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N}\mu\left(E\cap T^{n}E\cap\cdots\cap T^{(k-1)n}E\right)>0.$$

Definition. A system $X = (X, \mathcal{X}, \mu, T)$ is **SZ of level** *k* if

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^N\int_X f\cdot T^nf\cdot T^{2n}f\cdots T^{(k-1)n}f\,\mathrm{d}\mu>0,$$

whenever $f \in L^{\infty}(X)$, $f \ge 0$, and $\mathbb{E}(f) > 0$. A system X is SZ if it is SZ of every level.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ideas of the Proof WM & AP Roth's Theorem

Szemerédi Systems (SZ Systems)

Multiple Recurrence Theorem (alternative form)

 (X, \mathcal{X}, μ, T) is a system, and $k \in \mathbb{N}_+$. $\forall E \in \mathcal{X}$ with $\mu(E) > 0$,

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N}\mu\left(E\cap T^{n}E\cap\cdots\cap T^{(k-1)n}E\right)>0.$$

Definition. A system $X = (X, \mathcal{X}, \mu, T)$ is **SZ of level** *k* if

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^N\int_X f\cdot T^nf\cdot T^{2n}f\cdots T^{(k-1)n}f\,\mathrm{d}\mu>0,$$

whenever $f \in L^{\infty}(X)$, $f \ge 0$, and $\mathbb{E}(f) > 0$. A system X is SZ if it is SZ of every level. Ultimate Goal: Every system is SZ.

Ideas of the Proof WM & AP Roth's Theorem

Ideas of the Proof – Types of Systems

Measure Preserving Systems

(according to the behavior of T)

Ideas of the Proof WM & AP Roth's Theorem

Ideas of the Proof – Types of Systems

Measure Preserving Systems

(according to the behavior of T)

Ideas of the Proof WM & AP Roth's Theorem

Ideas of the Proof – Two Extreme Cases

T is "chaotic". If $E \in \mathcal{X}$ is any event in the probability space (X, \mathcal{X}, μ) , then E, TE, T^2E, \ldots are all independent.

Ideas of the Proof WM & AP Roth's Theorem

Ideas of the Proof – Two Extreme Cases

T is "chaotic". If $E \in \mathcal{X}$ is any event in the probability space (X, \mathcal{X}, μ) , then E, TE, T^2E, \ldots are all independent. \Longrightarrow $\mu\left(E \cap T^nE \cap \cdots \cap T^{(k-1)n}E\right) = \prod_{i=0}^{k-1} \mu\left(T^{i \cdot n}E\right) = \mu(E)^k > 0$, whenever $\mu(E) > 0$. \checkmark

Ideas of the Proof WM & AP Roth's Theorem

Ideas of the Proof – Two Extreme Cases

T is "chaotic". If $E \in \mathcal{X}$ is any event in the probability space (X, \mathcal{X}, μ) , then E, TE, T^2E, \ldots are all independent. \Longrightarrow $\mu \left(E \cap T^nE \cap \cdots \cap T^{(k-1)n}E\right) = \prod_{i=0}^{k-1} \mu \left(T^{i \cdot n}E\right) = \mu(E)^k > 0$, whenever $\mu(E) > 0$. \checkmark

T is periodic. For every $E \in \mathcal{X}$ there is an $r \in \mathbb{N}_+$ (may depend on *E*), such that $T^r E = E$.

Ideas of the Proof WM & AP Roth's Theorem

Ideas of the Proof – Two Extreme Cases

T is "chaotic". If $E \in \mathcal{X}$ is any event in the probability space (X, \mathcal{X}, μ) , then E, TE, T^2E, \ldots are all independent. \Longrightarrow $\mu \left(E \cap T^nE \cap \cdots \cap T^{(k-1)n}E\right) = \prod_{i=0}^{k-1} \mu \left(T^{i \cdot n}E\right) = \mu(E)^k > 0$, whenever $\mu(E) > 0$. \checkmark

T is periodic. For every $E \in \mathcal{X}$ there is an $r \in \mathbb{N}_+$ (may depend on *E*), such that $T^r E = E$. \Longrightarrow $\mu \left(E \cap T^n E \cap \cdots \cap T^{(k-1)n} E \right) = \mu(E) > 0$, whenever $r \mid n$. \checkmark

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ideas of the Proof WM & AP Roth's Theorem

Ideas of the Proof – Two Extreme Cases

T is "chaotic". If $E \in \mathcal{X}$ is any event in the probability space (X, \mathcal{X}, μ) , then E, TE, T^2E, \ldots are all independent. \Longrightarrow $\mu\left(E \cap T^nE \cap \cdots \cap T^{(k-1)n}E\right) = \prod_{i=0}^{k-1} \mu\left(T^{i \cdot n}E\right) = \mu(E)^k > 0$, whenever $\mu(E) > 0$. \checkmark

T is periodic. For every $E \in \mathcal{X}$ there is an $r \in \mathbb{N}_+$ (may depend on *E*), such that $T^r E = E$. \Longrightarrow $\mu \left(E \cap T^n E \cap \cdots \cap T^{(k-1)n} E \right) = \mu(E) > 0$, whenever $r \mid n$. \checkmark

Problem. The above assumptions are very restrictive, and give solution only for special cases. We need to weaken them!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ideas of the Proof WM & AP Roth's Theorem

Ideas of the Proof – Two Extreme Cases

T is "chaotic". If $E \in \mathcal{X}$ is any event in the probability space (X, \mathcal{X}, μ) , then E, TE, T^2E, \ldots are all independent. \Longrightarrow $\mu \left(E \cap T^nE \cap \cdots \cap T^{(k-1)n}E\right) = \prod_{i=0}^{k-1} \mu \left(T^{i \cdot n}E\right) = \mu(E)^k > 0$, whenever $\mu(E) > 0$. \checkmark

T is periodic. For every $E \in \mathcal{X}$ there is an $r \in \mathbb{N}_+$ (may depend on *E*), such that $T^r E = E$. \Longrightarrow $\mu \left(E \cap T^n E \cap \cdots \cap T^{(k-1)n} E \right) = \mu(E) > 0$, whenever $r \mid n$. \checkmark

Problem. The above assumptions are very restrictive, and give solution only for special cases. We need to weaken them! \rightsquigarrow

Weak mixing and Almost Periodic/Compact systems.

Ideas of the Proof WM & AP Roth's Theorem

Ideas of the Proof – Types of Systems

Measure Preserving Systems

(according to the behavior of T)

Ideas of the Proof WM & AP Roth's Theorem

Ideas of the Proof – Types of Systems

Measure Preserving Systems

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

Weak Mixing Systems

Intuition. The events $E, TE, T^2E, ...$ are <u>not</u> independent, but E and T^nE become nearly uncorrelated in some sense as $n \to \infty$.

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

Weak Mixing Systems

Intuition. The events $E, TE, T^2E, ...$ are <u>not</u> independent, but E and T^nE become nearly uncorrelated in <u>some sense</u> as $n \to \infty$. **Definition.** $v \in V$, $(v_n)_{n \in \mathbb{N}} \subset V$ normed. **D-lim**_{$n \to \infty$} $v_n = v$, if for any $\varepsilon > 0$ we have $\overline{\delta} (\{n \in \mathbb{N} \mid ||v_n - v|| > \varepsilon\}) = 0$. Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Weak Mixing Systems

Intuition. The events $E, TE, T^2E, ...$ are <u>not</u> independent, but E and T^nE become nearly uncorrelated in <u>some sense</u> as $n \to \infty$. **Definition.** $v \in V$, $(v_n)_{n \in \mathbb{N}} \subset V$ normed. **D**-lim_{$n\to\infty$} $v_n = v$, if for any $\varepsilon > 0$ we have $\overline{\delta} \left(\{ n \in \mathbb{N} \mid ||v_n - v|| > \varepsilon \} \right) = 0$. **Definition.** (X, \mathcal{X}, μ, T) is weak mixing if for any $A, B \in \mathcal{X}$ D-lim_{$n\to\infty$} $\mu(T^nA \cap B) = \mu(A)\mu(B)$. $\Big|$ D-lim_{$n\to\infty$} $\langle T^nf, g \rangle = \mathbb{E}(f)\mathbb{E}(g)$. Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Weak Mixing Systems

Intuition. The events $E, TE, T^2E, ...$ are <u>not</u> independent, but E and T^nE become nearly uncorrelated in some sense as $n \to \infty$. **Definition.** $v \in V$, $(v_n)_{n \in \mathbb{N}} \subset V$ normed. **D**-lim_{$n\to\infty$} $v_n = v$, if for any $\varepsilon > 0$ we have $\overline{\delta}(\{n \in \mathbb{N} \mid ||v_n - v|| > \varepsilon\}) = 0$. **Definition.** (X, \mathcal{X}, μ, T) is weak mixing if for any $A, B \in \mathcal{X}$ D-lim_{$n\to\infty$} $\mu(T^nA \cap B) = \mu(A)\mu(B)$. $\Big| \begin{array}{c} D-lim_{n\to\infty} \langle T^nf, g \rangle = \mathbb{E}(f)\mathbb{E}(g). \end{array}$

Comparing weak mixing and ergodic systems:

Proposition. Weak mixing \implies ergodicity (but not vica versa). **Proposition.** X w. m. $\iff X \times X$ w. m. $\iff X \times X$ ergodic. **Remark.** X ergodic $\implies X \times X$ ergodic [irrational rotation of S¹].

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

Weak Mixing Functions

Definition. In a system (X, \mathcal{X}, μ, T) a function $f \in L^2(X)$ is called weak mixing if D-lim_{$n\to\infty$} $\langle T^n f, f \rangle = 0$.

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

Weak Mixing Functions

Definition. In a system (X, \mathcal{X}, μ, T) a function $f \in L^2(X)$ is called weak mixing if D-lim_{$n\to\infty$} $\langle T^n f, f \rangle = 0$.

Intuition. f is w. m. if the "shifts" $T^n f$ eventually become orthogonal to f (for which T displays "mixing" behavior).

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Weak Mixing Functions

Definition. In a system (X, \mathcal{X}, μ, T) a function $f \in L^2(X)$ is called **weak mixing** if D-lim_{$n\to\infty$} $\langle T^n f, f \rangle = 0$.

Intuition. f is w. m. if the "shifts" $T^n f$ eventually become orthogonal to f (for which T displays "mixing" behavior).

Characterization of w. m. systems by w. m. functions: A system (X, \mathcal{X}, μ, T) is weak mixing \iff every $f \in L^2(X)$ with $\mathbb{E}(f) = 0$ is weak mixing. Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

Weak Mixing Functions

Definition. In a system (X, \mathcal{X}, μ, T) a function $f \in L^2(X)$ is called weak mixing if D-lim_{$n\to\infty$} $\langle T^n f, f \rangle = 0$.

Intuition. f is w. m. if the "shifts" $T^n f$ eventually become orthogonal to f (for which T displays "mixing" behavior).

Characterization of w. m. systems by w. m. functions: A system (X, \mathcal{X}, μ, T) is weak mixing \iff every $f \in L^2(X)$ with $\mathbb{E}(f) = 0$ is weak mixing.

Theorem. Every weak mixing system is SZ.

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

Ideas of the Proof – Types of Systems

Measure Preserving Systems

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

Ideas of the Proof – Types of Systems

Measure Preserving Systems

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

Compact Systems & Almost Periodic Functions

Definition. A function $f \in L^2(X)$ is almost periodic if for every $\varepsilon > 0$, the set $S_{\varepsilon} = \{n \in \mathbb{Z} \mid ||f - T^n f||_2 < \varepsilon\}$ has bounded gaps, which means $\exists N > 0: S_{\varepsilon} \cap [m, m + N] \neq \emptyset$ for all $m \in \mathbb{Z}$.

Compact Systems & Almost Periodic Functions

Definition. A function $f \in L^2(X)$ is almost periodic if for every $\varepsilon > 0$, the set $S_{\varepsilon} = \{n \in \mathbb{Z} \mid ||f - T^n f||_2 < \varepsilon\}$ has bounded gaps, which means $\exists N > 0: S_{\varepsilon} \cap [m, m + N] \neq \emptyset$ for all $m \in \mathbb{Z}$.

Definition. A system (X, \mathcal{X}, μ, T) is called **compact** if every $f \in L^2(X)$ is almost periodic.

Compact Systems & Almost Periodic Functions

Definition. A function $f \in L^2(X)$ is **almost periodic** if for every $\varepsilon > 0$, the set $S_{\varepsilon} = \{n \in \mathbb{Z} \mid ||f - T^n f||_2 < \varepsilon\}$ has bounded gaps, which means $\exists N > 0: S_{\varepsilon} \cap [m, m + N] \neq \emptyset$ for all $m \in \mathbb{Z}$.

Definition. A system (X, \mathcal{X}, μ, T) is called **compact** if every $f \in L^2(X)$ is almost periodic.

Theorem. Every compact system is SZ.

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

Ideas of the Proof – Types of Systems

Measure Preserving Systems

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

Ideas of the Proof – Types of Systems

Measure Preserving Systems

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

Ideas of the Proof – Types of Systems

Measure Preserving Systems

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions

WM & AP Components

Weak Mixing & Almost Periodic Components

Notation. $WM(X) := \{f \in L^2(X) \mid f \text{ is weak mixing}\}\$ $AP(X) := \{f \in L^2(X) \mid f \text{ is almost periodic}\}$

Kristóf Huszár Szemerédi's Theorem via Ergodic Theory

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

Weak Mixing & Almost Periodic Components

Notation. $WM(X) := \{f \in L^2(X) \mid f \text{ is weak mixing}\}\$ $AP(X) := \{f \in L^2(X) \mid f \text{ is almost periodic}\}\$

Key Proposition. For any system, $L^2(X) = WM(X) \oplus AP(X)$ as an orthogonal direct sum of Hilbert spaces.

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

Weak Mixing & Almost Periodic Components

Notation. $WM(X) := \{f \in L^2(X) \mid f \text{ is weak mixing}\}\$ $AP(X) := \{f \in L^2(X) \mid f \text{ is almost periodic}\}$

Key Proposition. For any system, $L^2(X) = WM(X) \oplus AP(X)$ as an orthogonal direct sum of Hilbert spaces.

Proof ingredients.

- $AP(X) \subseteq L^2(X)$ is a closed *T*-invariant subspace.
- $f \in WM(X) \iff \langle f, g \rangle = 0$ for all $g \in AP(X)$.

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

Weak Mixing & Almost Periodic Components

Notation. $WM(X) := \{f \in L^2(X) \mid f \text{ is weak mixing}\}\$ $AP(X) := \{f \in L^2(X) \mid f \text{ is almost periodic}\}$

Key Proposition. For any system, $L^2(X) = WM(X) \oplus AP(X)$ as an orthogonal direct sum of Hilbert spaces.

Proof ingredients.

• $AP(X) \subseteq L^2(X)$ is a closed *T*-invariant subspace.

•
$$f \in WM(X) \iff \langle f, g \rangle = 0$$
 for all $g \in AP(X)$.

Message. Unless a system is completely "pseudorandom" ($\leftrightarrow WM$), it must contain some "structured" ($\leftrightarrow AP$) piece.

Ideas of the Proof WM & AP Roth's Theorem

WM Systems & Functions Cp. Systems & AP Functions WM & AP Components

Weak Mixing & Almost Periodic Components

Notation. $WM(X) := \{f \in L^2(X) \mid f \text{ is weak mixing}\}\$ $AP(X) := \{f \in L^2(X) \mid f \text{ is almost periodic}\}\$

Key Proposition. For any system, $L^2(X) = WM(X) \oplus AP(X)$ as an orthogonal direct sum of Hilbert spaces.

Proof ingredients.

• $AP(X) \subseteq L^2(X)$ is a closed *T*-invariant subspace.

•
$$f \in WM(X) \iff \langle f, g \rangle = 0$$
 for all $g \in AP(X)$.

Message. Unless a system is completely "pseudorandom" ($\leftrightarrow WM$), it must contain some "structured" ($\leftrightarrow AP$) piece.

Now we are ready to prove Roth's Theorem.

Proof

Roth's Theorem – Statement of the Theorem

Theorem (Roth). Every subset A of \mathbb{Z} with $\overline{\delta}(A) > 0$ contains a 3-term arithmetic progression.

Statement Ingredients

Proof

Roth's Theorem – Statement of the Theorem

Theorem (Roth). Every subset A of \mathbb{Z} with $\overline{\delta}(A) > 0$ contains a 3-term arithmetic progression. \iff

Statement

Ingredients

Theorem (Roth). Every system is SZ of level 3. In other words, let (X, \mathcal{X}, μ, T) be a system. Then for every $f \in L^{\infty}(X)$ with $f \ge 0$ and $\mathbb{E}(f) > 0$, we have

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\int_X f\cdot T^nf\cdot T^{2n}f\,\mathrm{d}\mu>0.$$

Proof

Roth's Theorem – Statement of the Theorem

Theorem (Roth). Every subset A of \mathbb{Z} with $\overline{\delta}(A) > 0$ contains a 3-term arithmetic progression. \iff

Statement Ingredients

Theorem (Roth). Every system is SZ of level 3. In other words, let (X, \mathcal{X}, μ, T) be a system. Then for every $f \in L^{\infty}(X)$ with $f \ge 0$ and $\mathbb{E}(f) > 0$, we have

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\int_X f\cdot T^nf\cdot T^{2n}f\,\mathrm{d}\mu>0.$$

Intuition. We get rid of the weak mixing part of the system, and project it onto its almost periodic piece, which is known to be SZ, as it is a compact system.

Ideas of the Proof WM & AP Roth's Theorem

Proof

Roth's Theorem – Key Ingredients

Proposition (**(**). $L^2(X) = WM(X) \oplus AP(X)$ as an orthogonal direct sum of Hilbert spaces. Therefore each $f \in L^2(X)$ can be written as $f = f_{WM} + f_{AP} \in WM(X) \oplus AP(X)$.

Statement Ingredients

Proposition (,). Let (X, \mathcal{X}, μ, T) be an <u>ergodic</u> system. Then for any $f, g \in L^{\infty}(X)$, we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \left(T^n f \ T^{2n} g - T^n f_{AP} T^{2n} g_{AP} \right) = 0 \quad \text{in } L^2.$$

[The proof relies on von Neumann's mean Ergodic Theorem.]

Theorem (**I**). Every compact system is SZ.

Ideas of the Proof WM & AP Roth's Theorem

Statement Ingredients Proof

Roth's Theorem – Proof

Let $f \in L^{\infty}(X)$ with $f \ge 0$ and $\mathbb{E}(f) > 0$.

Kristóf Huszár Szemerédi's Theorem via Ergodic Theory

Ideas of the Proof WM & AP Roth's Theorem

Statement Ingredients Proof

Roth's Theorem – Proof

Let $f \in L^{\infty}(X)$ with $f \ge 0$ and $\mathbb{E}(f) > 0$.

Via ergodic decomposition we may assume ergodicity of X.
Ideas of the Proof WM & AP Roth's Theorem

Statement Ingredients Proof

Roth's Theorem – Proof

Let $f \in L^{\infty}(X)$ with $f \ge 0$ and $\mathbb{E}(f) > 0$.

Via ergodic decomposition we may assume ergodicity of X.

$$\liminf_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_X f \cdot T^n f \cdot T^{2n} f \, \mathrm{d}\mu$$

Ideas of the Proof WM & AP Roth's Theorem

Statement Ingredients Proof

Roth's Theorem – Proof

Let $f \in L^{\infty}(X)$ with $f \ge 0$ and $\mathbb{E}(f) > 0$.

Via ergodic decomposition we may assume ergodicity of X.

$$\liminf_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_X f \cdot T^n f \cdot T^{2n} f \, \mathrm{d}\mu \stackrel{\clubsuit}{=} \\ = \liminf_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_X f \cdot T^n f_{AP} \cdot T^{2n} f_{AP} \, \mathrm{d}\mu$$

Ideas of the Proof WM & AP Roth's Theorem

Statement Ingredients Proof

Roth's Theorem – Proof

Let $f \in L^{\infty}(X)$ with $f \ge 0$ and $\mathbb{E}(f) > 0$.

Via ergodic decomposition we may assume ergodicity of X.

$$\liminf_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} f \cdot T^{n} f \cdot T^{2n} f \, \mathrm{d}\mu \stackrel{\bullet}{=}$$
$$= \liminf_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} f \cdot T^{n} f_{AP} \cdot T^{2n} f_{AP} \, \mathrm{d}\mu \stackrel{\bullet}{=}$$
$$= \liminf_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} (f_{WM} + f_{AP}) \cdot T^{n} f_{AP} \cdot T^{2n} f_{AP} \, \mathrm{d}\mu$$

Ideas of the Proof WM & AP Roth's Theorem

Proof

Roth's Theorem – Proof

Let $f \in L^{\infty}(X)$ with $f \ge 0$ and $\mathbb{E}(f) > 0$.

Via ergodic decomposition we may assume ergodicity of X.

Statement Ingredients

$$\liminf_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} f \cdot T^{n} f \cdot T^{2n} f \, d\mu \stackrel{\bullet}{=}$$

$$= \liminf_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} f \cdot T^{n} f_{AP} \cdot T^{2n} f_{AP} \, d\mu \stackrel{\bullet}{=}$$

$$= \liminf_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} (f_{WM} + f_{AP}) \cdot T^{n} f_{AP} \cdot T^{2n} f_{AP} \, d\mu \stackrel{\bullet}{=}$$

$$= \liminf_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int_{X} f_{AP} \cdot T^{n} f_{AP} \cdot T^{2n} f_{AP} \, d\mu \stackrel{\bullet}{=} 0,$$
as $\mathbb{E}(f_{AP}) = \mathbb{E}(\mathbb{E}(f | \mathcal{X}_{AP})) = \mathbb{E}(f) > 0$ (see Appendix).

References

- 📔 Klaus F. Roth:
 - On Certain Sets of Integers.
 - J. London Math. Soc. 28(1953), 104–109.

Endre Szemerédi:

On Sets of Integers Containing no k Elements in Arithmetic Progression. Acta Arith. **27**(1975), 199–245.

Peter Walters:

An Introduction to Ergodic Theory (GTM **79**). Springer, New York, 1982.

Yufei Zhao:

Szemerédi's Theorem via Ergodic Theory. Cambridge University, 2011.

(1日) (日) (日) (日)

= 200

What About the Set of Primes?

Let $\mathcal{P} := \{\text{nonnegative primes}\} \subset \mathbb{Z}$, and $\pi(x) := \mathcal{P} \cap [0, x]$. **Claim** (elementary). $\lim_{x\to\infty} \pi(x)/x = 0$. $\Longrightarrow \overline{\delta}(\mathcal{P}) = 0$. **Prime Number Theorem.** $\pi(x)/x \sim \log(x)^{-1}$ (as $x \to \infty$). **Question.** Longest arithmetic progression containing only primes?

Theorem (B. Green and T. Tao, 2004)

For any $k \in \mathbb{N}_+$ there exists a k-term arithmetic progression in \mathcal{P} .

Szemerédi's Theorem is a key ingredient of the proof.

Example (B. Perichon, J. Wróblewski, and G. Reynolds, 2010)

43, 142, 746, 595, 714, 191 + 23, 681, 770 \cdot 223, 092, 870 \cdot *n*, for

n = 0 to 25. \implies 26-term arithmetic progression of primes.

Ergodic Decomposition: An Example

Goal. Decompose an arbitrary system into **ergodic components**. **Why?** Ergodic theorems have **simple** forms for ergodic systems.

Example (a special finite case, but works in general)

 $X = \{1, 2, 3, 4, 5, 6\}, \ \mathcal{X} = 2^{X}, \ \mu: \text{ uniform, } T = (23)(456) \in S_{X}.$ $\implies T(1) = 1, \ T(2) = 3, \ T(3) = 2, \ T(4) = 5, \ T(5) = 6, \ T(6) = 4.$ **NOT ergodic:** $E = \{1\}$ is *T*-invariant, but $\mu(E) = \frac{1}{6} \notin \{0, 1\}.$ **BUT consider:** $\mu_1 = \mathbb{1}_{\{1\}}, \ \mu_2 = (\frac{1}{2}) \cdot \mathbb{1}_{\{2,3\}}, \ \mu_3 = (\frac{1}{3}) \cdot \mathbb{1}_{\{4,5,6\}}.$ **Note:** $(X, \mathcal{X}, \mu_i, T)$ **IS** ergodic for i = 1, 2, 3. Moreover, we have

$$\mu = \frac{1}{6}\mu_1 + \frac{1}{3}\mu_2 + \frac{1}{2}\mu_3 =$$

weighted average of ergodic measures.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへぐ

Fix a system (X, \mathcal{X}, μ, T) , $E \in \mathcal{X}$ with $\mu(E) > 0$, and $k \in \mathbb{N}_+$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへぐ

Fix a system (X, \mathcal{X}, μ, T) , $E \in \mathcal{X}$ with $\mu(E) > 0$, and $k \in \mathbb{N}_+$.

• $\mathcal{AP}_k := \{ \boldsymbol{a} = (a_1, \dots, a_k) \subset \mathbb{Z} \mid \boldsymbol{a} \text{ is arithmetic progression} \}.$

Fix a system (X, \mathcal{X}, μ, T) , $E \in \mathcal{X}$ with $\mu(E) > 0$, and $k \in \mathbb{N}_+$.

AP_k := {*a* = (*a*₁,..., *a_k*) ⊂ ℤ | *a* is arithmetic progression}. *B_a* := {*x* ∈ *X* | *T^{a_i}x* ∈ *E*, 1 ≤ *i* ≤ *k*}; *B_k* := ⋃<sub>*a*∈*AP_k B_a*.
</sub>

Fix a system (X, \mathcal{X}, μ, T) , $E \in \mathcal{X}$ with $\mu(E) > 0$, and $k \in \mathbb{N}_+$.

AP_k := {*a* = (*a*₁,..., *a_k*) ⊂ ℤ | *a* is arithmetic progression}. *B_a* := {*x* ∈ *X* | *T^{a_i}x* ∈ *E*, 1 ≤ *i* ≤ *k*}; *B_k* := ⋃<sub>*a*∈*AP_k B_a*.
</sub>

Note: $B_k = \{x \in X \mid \{n \in \mathbb{Z} \mid T^n x \in E\}$ contains some $a \in AP_k\}$.

Fix a system (X, \mathcal{X}, μ, T) , $E \in \mathcal{X}$ with $\mu(E) > 0$, and $k \in \mathbb{N}_+$.

AP_k := {*a* = (*a*₁,..., *a_k*) ⊂ ℤ | *a* is arithmetic progression}.
 B_a := {*x* ∈ *X* | *T^{a_i}x* ∈ *E*, 1 ≤ *i* ≤ *k*}; *B_k* := ⋃<sub>*a*∈*AP_k B_a*.
</sub>

Note: $B_k = \{x \in X \mid \{n \in \mathbb{Z} \mid T^n x \in E\}$ contains some $a \in AP_k\}$. **Choose** $F \in \mathcal{X}$ as in the Lemma.

Fix a system (X, \mathcal{X}, μ, T) , $E \in \mathcal{X}$ with $\mu(E) > 0$, and $k \in \mathbb{N}_+$.

Note: $B_k = \{x \in X \mid \{n \in \mathbb{Z} \mid T^n x \in E\}$ contains some $a \in \mathcal{AP}_k\}$. **Choose** $F \in \mathcal{X}$ as in the Lemma. By Szemerédi, $\{n \in \mathbb{Z} \mid T^n x \in E\}$ contains some $a \in \mathcal{AP}_k$ for each $x \in F$.

Fix a system (X, \mathcal{X}, μ, T) , $E \in \mathcal{X}$ with $\mu(E) > 0$, and $k \in \mathbb{N}_+$.

AP_k := {a = (a₁,..., a_k) ⊂ ℤ | a is arithmetic progression}.
 B_a := {x ∈ X | T^{a_i}x ∈ E, 1 ≤ i ≤ k}; B_k := ⋃_{a∈AP_k} B_a.

Note: $B_k = \{x \in X \mid \{n \in \mathbb{Z} \mid T^n x \in E\}$ contains some $a \in AP_k\}$. **Choose** $F \in \mathcal{X}$ as in the **Lemma**. By **Szemerédi**, $\{n \in \mathbb{Z} \mid T^n x \in E\}$ contains some $a \in AP_k$ for each $x \in F$. $\Longrightarrow F \subseteq B_k = \bigcup_{a \in AP_k} B_a$, a <u>countable</u> union.

Fix a system (X, \mathcal{X}, μ, T) , $E \in \mathcal{X}$ with $\mu(E) > 0$, and $k \in \mathbb{N}_+$.

Note: $B_k = \{x \in X \mid \{n \in \mathbb{Z} \mid T^n x \in E\}$ contains some $a \in AP_k\}$. **Choose** $F \in \mathcal{X}$ as in the **Lemma**. By **Szemerédi**, $\{n \in \mathbb{Z} \mid T^n x \in E\}$ contains some $a \in AP_k$ for each $x \in F$. $\Longrightarrow F \subseteq B_k = \bigcup_{a \in AP_k} B_a$, a <u>countable</u> union. \Longrightarrow **Since** $\mu(F) > 0$, $\exists b \in AP_k$: $\mu(B_b) > 0$.

Fix a system (X, \mathcal{X}, μ, T) , $E \in \mathcal{X}$ with $\mu(E) > 0$, and $k \in \mathbb{N}_+$.

AP_k := {*a* = (*a*₁,..., *a_k*) ⊂ ℤ | *a* is arithmetic progression}.
 B_a := {*x* ∈ *X* | *T^{a_i}x* ∈ *E*, 1 ≤ *i* ≤ *k*}; *B_k* := ⋃<sub>*a*∈*AP_k B_a*.
</sub>

Note: $B_k = \left\{ x \in X \mid \{n \in \mathbb{Z} \mid T^n x \in E\} \text{ contains some } \mathbf{a} \in \mathcal{AP}_k \right\}.$ **Choose** $F \in \mathcal{X}$ as in the Lemma. By Szemerédi, $\{n \in \mathbb{Z} \mid T^n x \in E\}$ contains some $\mathbf{a} \in \mathcal{AP}_k$ for each $x \in F$. $\Longrightarrow F \subseteq B_k = \bigcup_{\mathbf{a} \in \mathcal{AP}_k} B_{\mathbf{a}}$, a <u>countable</u> union. \Longrightarrow Since $\mu(F) > 0$, $\exists \mathbf{b} \in \mathcal{AP}_k : \mu(B_{\mathbf{b}}) > 0$. $\Longrightarrow T^c B_{\mathbf{b}} \subseteq E \cap T^n E \cap \cdots \cap T^{(k-1)n}E$ for some $c \in \mathbb{Z}$ and $n \in \mathbb{N}_+$.

Fix a system (X, \mathcal{X}, μ, T) , $E \in \mathcal{X}$ with $\mu(E) > 0$, and $k \in \mathbb{N}_+$.

AP_k := {*a* = (*a*₁,..., *a_k*) ⊂ ℤ | *a* is arithmetic progression}.
 B_a := {*x* ∈ *X* | *T^{a_i}x* ∈ *E*, 1 ≤ *i* ≤ *k*}; *B_k* := ⋃<sub>*a*∈*AP_k B_a*.
</sub>

Note: $B_k = \left\{ x \in X \mid \{n \in \mathbb{Z} \mid T^n x \in E\} \text{ contains some } a \in \mathcal{AP}_k \right\}.$ Choose $F \in \mathcal{X}$ as in the Lemma. By Szemerédi, $\{n \in \mathbb{Z} \mid T^n x \in E\}$ contains some $a \in \mathcal{AP}_k$ for each $x \in F$. $\Longrightarrow F \subseteq B_k = \bigcup_{a \in \mathcal{AP}_k} B_a$, a <u>countable</u> union. \Longrightarrow Since $\mu(F) > 0$, $\exists b \in \mathcal{AP}_k : \mu(B_b) > 0$. $\Longrightarrow T^c B_b \subseteq E \cap T^n E \cap \cdots \cap T^{(k-1)n} E$ for some $c \in \mathbb{Z}$ and $n \in \mathbb{N}_+$. $\Longrightarrow \mu(E \cap T^n E \cap \cdots \cap T^{(k-1)n} E) \ge \mu(T^c B_b) = \mu(B_b) > 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆

Definition. \mathcal{Y} is *T***-invariant**, if $TE, T^{-1}E \in \mathcal{Y}$ for any $E \in \mathcal{Y}$.

Definition. If $X = (X, \mathcal{X}, \mu, T)$ is a system, $X' = (X, \mathcal{X}', \mu, T)$ is called a **factor** of X if \mathcal{X}' is a *T***-invariant** sub- σ -algebra of \mathcal{X} . A factor X' is **trivial**, if $\mu(E) \in \{0, 1\}$ for all $E \in \mathcal{X}'$.

It is **compact**, if X' is a compact measure preserving system.

Theorem

Let X be a system. Exactly one of the followings is true:

- X is weak mixing ("**pseudorandomness**");
- X has a nontrivial compact factor ("structure").

Kronecker Factors

Notation. If $X = (X, \mathcal{X}, \mu, T)$, $\mathcal{X}_{AP} := \{A \in X \mid \mathbb{1}_A \in AP(X)\}$.

Claim. \mathcal{X}_{AP} is a *T*-invariant sub- σ -algebra of \mathcal{X} . Therefore $(X, \mathcal{X}_{AP}, \mu, T)$ is a factor of *X*, called **Kronecker factor**.

Remark. The Kronecker is the maximal compact factor of X.

Proposition. Let (X, \mathcal{X}, μ, T) be a system, and $f \in L^2(X, \mathcal{X}, \mu)$.

• $f \in AP(X)$ iff f is \mathcal{X}_{AP} -measurable: $AP(X) = L^2(X, \mathcal{X}_{AP}, \mu)$.

②
$$f \in WM(X)$$
 iff $\mathbb{E}(f|\mathcal{X}_{AP})=$ 0 a. e.

● (♠) We can write $f = f_{AP} + f_{WM}$, where $f_{AP} := \mathbb{E}(f | \mathcal{X}_{AP}) \in AP(X)$, and $f_{WM} := f - f_{AP} \in WM(X)$.