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We consider sequences of large graphs which have certain convergent graph parame-
ters. Many important graph parameters like the edge density may be represented
asymptotically as homomorphism densities. I turns out that convergence of homo-
morphism densities of a graph sequence gives rise to distance between graphs.
However, the limit with respect to this distance need not be a finite graph any more
but is instead represented by a symmetric measurable function on the unit square.
These measurable functions are called graphons and induce a general class of random
graphs whose numerical parameters, as long as they satisfy a Lipschitz condition, are
concentrated. Moreover, we investigate the relation between spectra of large graphs
and graphons.

1 Large Graphs and Their Limits

We recall that a graph u� consists of a set of nodes u� (u�) together a set of edges u�(u�). Usually
we will denote the number of nodes by u� if there arises no ambiguity of the underlying graph.
For simplicity, we will always consider non-empty and finite simple graphs, unless stated other-
wise. In a simple graph the edges form a set, i.e. there are no multiple edges. Moreover, each
edge is a pair of two distinct nodes.
A simple graph is called complete if every pair of distinct nodes is joined by an edge. We will
make use symbols like , , or to denote such graphs.
Now let us turn to the important notion of graph homomorphisms and their densities.

1.1 Definition Let u� and u� be graphs. A mapping u� : u� (u�) → u� (u�) is called homomorphism
if u� preserves edge adjacency, i.e. for every edge {u�, u�} ∈ u�(u�), the edge {u�(u�), u�(u�)} belongs
to u�(u�).
Denote by hom(u�, u�) the cardinality of all homomorphisms from u� to u�. Then the homo-
morphism density from u� to u� is defined by

u�(u�, u�) ∶= hom(u�, u�)
∣u� (u�)u� (u�)∣

.

Clearly, homomorphism density takes values in [0, 1]. Note that u�( , u�) asymptotically repre-
sents the density of edges in u�. Indeed, hom( , u�) = 2 |u�(u�)|. Since u� may have at most
1
2u�(u� − 1) edges, we obtain

u�( , u�) = 2 |u�(u�)|
u�2 ∼ 2 |u�(u�)|

u�(u� − 1).

Now let u� be a complete graph. Then hom(u�, u�) is just the number of colourings of the
vertices of u� with |u� (u�)| colours such that the colours of adjacent nodes are different.
The homomorphism density as well as the edge density are two examples of graph parameters.
A graph parameter assigns each equivalence class of isomorphic graphs a real number.
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We say that u�u� ∈ {0, 1}u� (u�)×u� (u�) is the adjacency matrix of a graph u� if (u�u�)u�u� is the
number of edges {u�, u�} in u�(u�). In the following example we consider the relation between the
spectrum of the adjacency matrix and certain homomorphism densities. Since the adjacency
matrix of an undirected graph is symmetric, its spectrum consists only of real eigenvalues.

1.2 Example (The spectrum of adjacency matrices) Let u� be a graph and let u�u� be the cycle on u�
nodes, i.e. each node of u�u� is adjacent to exactly two other nodes. Then the eigenvalues (u�u�)u�

u�=1
of the adjacency matrix u�u� satisfy the following identity:

hom(u�u�, u�) = tr(u�u�
u�) =

u�
∑
u�=1

u�u�
u� .

◀◀In particular, hom(u�2u�, u�)−2u� converges to the spectral radius of u�u� as (u� → ∞).

Intuitively, above examples suggest that graphs u� and u�, which share equal homomorphism
densities hom(u� , ⋅) for various graphs u� , are more or less alike. This motivates the following
notion of convergence on the class of finite graphs:
Let (u�u�)u�∈ℕ be a sequence of finite graphs u�u� such that limu�→∞ u� (u�u�) = ∞. Then (u�u�)u�∈ℕ
is said to be convergent if u�(u� , u�u�) converges for every finite graph u� as (u� → ∞).
Convergence in above sense can be expressed with respect to a certain pseudo metric.

1.3 Definition Let two graphs u� and u�′ be given where u� = |u� (u�)| and u�′ = |u� (u�′)|. A
fractional overlay of u� and u�′ is a matrix u� ∈ [0, 1]u� (u�)×u� (u�′) such that

∑
u�∈u� (u�)

u�u�u� = 1
u�′ and ∑

u�∈u� (u�′)
u�u�u� = 1

u�.

Hence, u� represents probability measure on u� (u�) × u� (u�′) whose marginals are uniformly
distributed. We denote the set of all fractional overlay of u� and u�′ by u�(u�, u�′).
Set u� ∶= u�u� and u�′ ∶= u�u�′ . Then the cut--distance between u� and u�′ is defined as

u�□(u�, u�′) ∶= min
u�∈u�(u�,u�′)

max
u�,u� ⊆u� (u�)×u� (u�′)

∣ ∑
(u�,u�)∈u�
(u�,u�)∈u�

u�u�u�u�u�u�(u�u�u� − u�′
u�u�)∣.

Note that u� and u�′ need not be defined on the same node set.

1.4 Proposition Let (u�u�)u�∈ℕ be a sequence of finite graphs u�u� such that limu�→∞ u� (u�u�) = ∞.
Then (u�u�)u�∈ℕ is convergent precisely when (u�u�)u�∈ℕ is a Cauchy sequence with respect to u�□.

To identify a possible limit object of Cauchy sequences with respect to u�□, it is appropriate to
transfer above definitions to a measure theoretic setting.

1.5 Definition We call a symmetric, Lebesgue measurable function u� : [0, 1]2 → [0, 1] a graphon.
From a graph--theoretic point of view, a graphon u� is just certain graph on the infinite node
set [0, 1] with edge weights u�(u�, u�) between nodes u�, u� ∈ [0, 1].
The homomorphism density of a graphon u� with respect to a finite graph u� is defined as

u�(u�, u�) ∶= ∫
[0,1]u�

∏
u�,u�∈u�(u�)

u�(u�u�, u�u�) u�(u�1, … u�u�),

where as usual u� = u� (u�).
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The cut--distance between two graphons u� and u� is given by

u�□(u�, u�) ∶= inf
u�,u�

sup
u�,u�

∣ ∫
u�×u�

u�(u�(u�), u�(u�)) − u�(u�(u�), u�(u�)) u�(u�, u�)∣,

where the infimum is taken over all measure preserving mappings u�, u� : [0, 1] → [0, 1], and the
supremum is taken over all Lebesgue measurable sets u�, u� ⊆ [0, 1].
Finite graphs may be identified with graphons in the following way: The step function u�u� :
[0, 1]2 → [0, 1] of a weighted graph u� with edge weights u�u�u� ≥ 0 is defined by

u�u�(u�, u�) = u�u�u� ∀(u�, u�) ∈ u�u� × u�u�, 1 ≤ u�, u� ≤ u�,

where (u�u�)u�
u�=1 is a equidistant partition of [0, 1].

The following result justifies the choice of the definitions given above.

1.6 Proposition Let u� and u� be finite graphs and let u�u� and u�u� be their respective step
functions. Then the following statements hold:

(i) The cut--distance satisfies u�□(u�u�, u�u�) = u�□(u�, u�).
(ii) The homomorphism density satisfies u�(u� , u�u�) = u�(u� , u�) for all finite graphs u� .

In above measure theoretic framework it is possible to identify the limit object of Cauchy
sequences of graphs with respect to u�□. To this end, it is reasonable to identify graphons with
cut--distance 0, and denote the resulting space of equivalence classes by ũ�0. Now we are in the
position to state the following topological result.

1.7 Theorem (ũ�0, u�□) is a compact metric space.

In particular, this means that ũ�0 is complete.

2 Random Graphs and Sample Concentration
In this section we consider general random subgraphs which are induced by a finite graph or –
more generally - a graphon.

2.1 Definition Let u� be a graphon and fix a number u� ∈ ℕ. Let (u�u�)u�
u�=1 be a family of independent

and uniformly distributed random variables on [0, 1]. Denote by u�(u�, u�) the random graph on
the node set (u�u�)u�

u�=1, where {u�u�, u�u�} is an edge with probability u�(u�u�, u�u�). u�(u�, u�) is called
a random graph induced by u� .

For reasonably large u� we expect the random graph u�(u�, u�) to resemble the inducing graphon
u� . To this end, let us start with considering large Erdős--Rényi graphs which depict the main
random graph model in classic graph theory.

2.2 Example (Limits of Erdős--Rényi graphs) Consider a constant graphon u� ≡ u� ∈ [0, 1]. Then
the resulting random graph u�(u�, u�) is called an Erdős--Rényi graph (in the sense of Gilbert)
if we identify the (random) node set u� (u�(u�, u�)) with [u�]. Indeed, in this random graph each
edge occurs independently with probability u�. Thus, the probability to obtain any particular
graph with u� edges on the node set [u�] is given by

u�u�(1 − u�)(u�
2)−u�.
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Figure 1 As the the size of the Erdős--Rényi graph increases, its step function resembles
a constant graphon if one takes some averaging into account. This intuitive pixel picture
convergence corresponds precisely to convergence in the cut--distance.

As the number of nodes u� increases, we expect u�(u�, u�) to be convergent to the underlying
graphon u� ≡ u�. Intuitively, this convergence may be visualized by pixel picture convergence
as shown in Figure 1. Indeed, the following lemma shows that u�(u�, u�) convergences to the

◀◀underlying graphon u� as (u� → ∞).

2.3 Lemma (Sampling) For every graphon u� we have

ℙ[u�□(u�, u�(u�, u�)) > 22√
ln u�

] ≤ exp ( − u�
2 ln u�) ∀u� ∈ ℕ.

In particular, u�(u�, u�) converges in probability to u� as (u� → ∞).
As an alternative to convergence in the cut --distance, one may also consider convergence with
respect to the homomorphism densities. More precisely, for every finite graph u� the homomor-
phism density u�(u� , u�(u�, u�)) is close to u�(u� , u�) in high probability.
We will see that this holds in the more general context of graph parameters.

2.4 Definition A simple graph parameter is a real--valued mapping u� on a set of simple graphs
such that u�(u�) = u�(u�′) for every pair of isomorphic graphs u� and u�′.
A simple graph parameter u� is called reasonably smooth if for every pair of graphs u� and
u� on the same node set such that the symmetric difference u�(u�)△u�(u�) is incident with one
common node or empty, we have

|u�(u�) − u�(u�)| ≤ 1. (1)

2.5 Theorem (Sample concentration) Let u� be a reasonably smooth graph parameter, let u� be a
graphon and fix u� ∈ ℕ. Then the expectation u�0 ∶= u�(u�(u�(u�, u�))) satisfies

ℙ[u�(u�(u�, u�)) ≥ u�0 +
√

2u�u�] ≤ u�−u� ∀u� ≥ 0. (2)

Amongst several approaches (cf. section 6.1 and 8.1 in [3]) we will prove this theorem by means
of martingale theory. To this end, recall that a discrete--time martingale is a sequence of random
variables (u�u�)u�∈ℕ0

on a probability space such that all expectations u�(u�u�) are finite and the
conditional expectations satisfy

u�(u�u�+1|u�1, …u�u�) = u�u� ∀u� ∈ ℕ0.

For the proof of Theorem 2.5 we first need the following fundamental inequality for martingales.
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2.6 Lemma (Azuma’s inequality) Let (u�u�)u�∈ℕ0
be a discrete--time martingale. Supposed that the

increments satisfy |u�u� − u�u�−1| ≤ u�u� almost surely for some constants u�u� > 0, we have

ℙ[u�u� − u�0 ≥ u�] ≤ exp ( − u�2

2 ∑u�
u�=1 u�2

u�

) ∀u� ∈ ℕ. (3)

Proof of Theorem 2.5 Denote by (u�u�)u�
u�=0 a sequence of subgraphs of u�(u�, u�) with nodes u� (u�u�) =

u� (u�(u�, u�)) and edges u�(u�u�) concentrated on at most u� nodes in such a way that

∅ = u�(u�0) ⊆ u�(u�1) ⊆ u�(u�2) ⊆ … ⊆ u�(u�u�) = u�(u�(u�, u�)).

For a given graph parameter u� , we define random variables

u�u� ∶= u�(u�(u�(u�, u�))∣u�u�) ∀u� ≤ u�.

To check that (u�u�)u�
u�=0 is a martingale, we use to the tower property of the conditional expectation

to compute

u�(u�u�∣u�u�−1) = u�(u�(u�(u�(u�, u�))∣u�u�)∣u�u�−1) = u�(u�(u�(u�, u�))∣u�u�−1) = u�u�−1.

Now the martingale property follows by induction.
Since u� is reasonably smooth, we have the following bound for the increments:

|u�u� − u�u�−1| ≤ 1 ∀u� ≤ u�.

Thus, we can apply Azuma’s inequality to obtain the estimate

ℙ[u�u� − u�0 ≥ u�] ≤ exp ( − u�2

2u�).

■■Finally it remains to note that u�0 = u�(u�(u�(u�, u�))) and u�u� = u�(u�(u�, u�)).

In particular, applying above theorem to the reasonably smooth graph parameters

u�±(u�) ∶= ±u� (u�)
u� (u�)u�(u� , u�)

implies the following concentration bound for the homomorphism density.

2.7 Corollary For every finite simple graph u� we have

ℙ[ |u�(u� , u�(u�, u�)) − u�(u� , u�)| ≥ u�] ≤ 2 exp ( − u�2u�
8 |u� (u�)|2

) ∀u� ∈ (0, 1), ∀u� ∈ ℕ. (4)

3 Spectral Graph Theory of Random Graphs

In Example 1.2 we considered the spectrum of the adjacency matrix u�u� with respect to a simple
graph u�. For graphons the analogue of the adjacency matrix is given by the corresponding
integral operator.

3.1 Definition Let a graphon u� be given. Then the corresponding Hilbert--Schmidt integral
operator u�u� : u�2([0, 1]) → u�2([0, 1]) is defined by



6

(u�u� u�)(u�) ∶=
1

∫
0

u�(u�, u�)u�(u�) u�u� ∀u� ∈ [0, 1].

Note that the operator u�u� is compact as well as self--adjoint. Therefore, the spectrum u�(u�u� )
consists of an at most countable subset of ℝ, where 0 either belongs to u�(u�u� ) or is the only
cluster point of the spectrum.
The following result shows that graph/graphon convergence with respect to the cut--distance
preserves convergence of the eigenvalues.

3.2 Proposition Let (u�u�)u�∈ℕ be a sequence of graphons, converging with respect to u�□ to a limit
graphon u� . Denote by (u�u�

u�)u�∈ℕ the spectrum of u�u�, taking multiplicity of the eigenvalues into
account and ordered with respect to ≥ for all u� ∈ ℕ. In a similar way, denote by (u�u�)u�∈ℕ the
ordered spectrum of u� . Then we have limu�→∞ u�u�

u� = u�u� for all u� ∈ ℕ.
The result holds as well when all sequences are ordered with respect to ≤ instead.

Note that for a simple graph u�, the rescaled spectrum 1
u�u�(u�u�) of the adjacency matrix u�u�

together with 0 forms the spectrum of the corresponding Hilbert--Schmidt integral operator u�u� .
As a result, we obtain the following corollary of Proposition 3.2.

3.3 Corollary Let (u�u�)u�∈ℕ be a sequence of finite simple graphs, converging with respect to u�□ to a
limit graphon u� . Denote by u�u�

1 ≥ u�u�
2 ≥ u�u�

3 ≥ … the spectrum of 1
|u� (u�u�)|u�u�u�

, taking multiplicity
of the eigenvalues into account for all u� ∈ ℕ. In a similar way, denote by (u�u�)u�∈ℕ the ordered
spectrum of u� . Then we have limu�→∞ u�u�

u� = u�u� for all u� ∈ ℕ.
The result holds as well when all sequences are ordered with respect to ≤ instead.
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