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Abstract. The aim of the rotation was to investigate the asymptotic behavior of the small-

est eigenvalue of the Schroedinger-type operator |p2 − 1| − λ|x|−1 for small λ, using the

Birman-Schwinger principle. In this draft we collect some preliminary results we got and
some attempts we tried to develop during our discussions.

1. Setting of the problem

Let V be the Coulomb potential, i.e. V (x) = − 1
|x| . Consider KE = |p2 − 1| + E for

small E > 0.
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Note that the integral on the unit sphere in (3) is nothing but the integral kernel of F†F , where
F : L1(R3)→ L2(S2) is the Fourier transform defined as
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We denote by AE the integral kernel of the second term of (2), thus we have
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Our aim is to prove that V
1
2ME |V |

1
2 is bounded on L2(R3) uniformly in E.

Indeed, in this case, 1 + λV
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The Birman-Schwinger principle tell us that λV
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1
2 having eigenvalue −1 is equivalent

to KE + λV having 0 as lowest eigenvalue, i.e. |p2 − 1|+ λV having −E as lowest eigenvalue.
As a consequence, the lowest eigenvalue −E would satisfy
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where the error term O(λ2) is uniformly bounded in E. In particular, we would have
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Hence, if V
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2 was uniformly bounded in E, it would follow that
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2. Boundedness of V
1
2 (p2 + 1)−1|V | 12

Let B∗ := {(x, y) ∈ R3 × R3 : |(x, y)| ≤ R∗}, R∗ > 0, BR∗ := {x ∈ R3 : |x| ≤ R∗} and
χ∗ := χBR∗ . Let fi ∈ L2(R3), i = 1, 2.
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where we used the weak Young inequality for r, q, w satisfying 1
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w = 2.

Observe that g ∈ L3
weak(R3), so that we can choose w = 3. Indeed,
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where w′ is the conjugate exponent of w. Since we want ||g||weak,w to be bounded, we choose
w′ = 3

2 , thus w = 3. As a consequence, for w = 3 and r = q, we get r = 6
5 .

(13) ||fiV
1
2χ∗|| 6

5
≤ ||fi||2||V

1
2χ∗||3 , i = 1, 2.
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Note that V ∈ L 3
2 (BR∗), hence ||V 1

2χ∗||3 is bounded.

Let χ̃ := χBR̃
, where R̃ < R∗ such that BR̃ ×BR̃ ⊂ B∗.

|Ib| =
∣∣∣∣ˆ
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where we used the Young inequality for r, q, p satisfying 1
r + 1

q + 1
p = 2. For p = 1 and r = q,

we get r = 2.
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Note that V ∈ L∞(R3 \BR̃), hence ||V 1
2 χ̃||∞ is bounded.

Finally, since V ∈ L 3
2 + L∞, we can conclude that V

1
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1
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3. Boundedness of V
1
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1
2
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By using spherical coordinates, we can rewrite it as

2π

ˆ ∞
0

dp p2
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0
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ˆ ∞
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Let
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ˆ ∞
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AE is uniformly bounded in E. Indeed, since sin a
a −

sin b
b ≤ c

|a−b|
|a+b| , then
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In particular,

(18) |A0(x)| ≤ c
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∣∣∣∣ 1

(p+ 1)2
− |p− 1|
p2 + 1

∣∣∣∣ ∼ 1

p2

for large p.
However, the uniformly boundedness of AE is not enough to have V

1
2AE |V |

1
2 bounded on

L2(R3) in the case of the Coulomb potential. This suggest us to study the behavior of AE(x)
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for large |x|.
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We thus deduce that AE(x) . 1
|x| for large |x|, but this decay is not enough for the Coulomb

potential. Hence, we could try to estimate the behavior of AE(x) for large |x| in a sharper way
without letting E going to zero. However, also in this case, long computations lead to

AE(x) ≤− (2− E) log

(
1− 1

(
√

1 + E + 1)|x|

)
+ (2− E) log

(
1 +

1

(
√

1 + E + 1)|x|

)
− (2− E) log

(
1 +

1√
1 + E

− 1

(
√

1 + E + 1)|x|

)
+

c

|x|
2− E√
1− E

[
log

(
1−
√

1− E +
1

|x|

)
− log

(
1 +
√

1− E +
1

|x|

)]
(20)

for large |x| and E << 1.

4. Another strategy

Consider directly

(21)

ˆ
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[
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p2 + 1

]
d3p =: DE(x− y)
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without splitting it into two terms as done in (2).
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∣∣V 1
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1
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=

ˆ
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](ˆ
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eip·x d3x

)( ˆ
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From now on we will denote by ∧ the Fuorier transform operator and by ∨ its inverse.
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ˆ
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eip·x d3x = f̂1(p) ∗

[
1
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]∧
= Ĉ3, 12
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=: g1(p)

(24)

ˆ
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e−ip·y d3y = f̌2(p) ∗

[
1
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= Č3, 12
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We thus obtain
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∣∣f2〉 = C3, 12

ˆ
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[
1
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]
g1(p)g2(p) d3p .

Notice that |p|− 5
2 is the Green’s function for ∆α when α = 1

4 . Hence,

(26) ∆
1
4

(
f̂i(p) ∗

1

|p| 52

)
= f̂i(p), i = 1, 2.

Furthermore, since f̂i ∈ L2(R3), then gi ∈ H
1
2

loc(R3) ↪→ Lqloc(R3), q ≤ 3, i = 1, 2.
On the other hand, observe that[

1
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− 1

p2 + 1

]
∼

χBR
(p)

|p2 − 1|+ E
=: g̃E(p) .

Hence,
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2
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|p2 − 1|+ E
g1(p)g2(p) d3p ≤ ||g̃E ||s||g1||q||g2||q ,

where s,q satisfy 1 = 2
q + 1

s , thus s ≥ 3.

However,

||g̃E ||ss =

ˆ
BR

[
1

|p2 − 1|+ E

]s
d3p = c

ˆ R

0

p2

(|p2 − 1|+ E)s
dp

−−−→
E→0

c

ˆ R

0

p2

(p− 1)s(p+ 1)s
dp =∞ for s ≥ 3 .(28)

Analogously, we could write

〈f1
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1
2

∣∣f2〉 ∼ ˆ
R3

g̃(|p|)
[
g1(p)g2(p)− g1

(
p
|p|

)
g2
(
p
|p|

)]
d3p

∼
ˆ ∞
0

g̃(p)
( ˆ

S2

[
g1(pω)g2(pω)− g1(ω)g2(ω)

]
dω

)
dp ,(29)

but also this does not seem to help. Indeed, we know that gi ∈ H
1
2

loc(R3), i = 1, 2. However, by
using the Trace Theorem, we would only get the trace of gi belonging to L2(S2).


