ASYMPTOTIC BEHAVIOR OF THE SMALLEST EIGENVALUE OF A
SCHROEDINGER-TYPE OPERATOR WITH COULOMB POTENTIAL

Alice Marveggio

ABSTRACT. The aim of the rotation was to investigate the asymptotic behavior of the small-
est eigenvalue of the Schroedinger-type operator |p? — 1| — A|z|~! for small A, using the
Birman-Schwinger principle. In this draft we collect some preliminary results we got and
some attempts we tried to develop during our discussions.

1. SETTING OF THE PROBLEM

Let V be the Coulomb potential, i.e. V(z) = —ﬁ. Consider K = |[p? — 1| + E for
small £ > 0.
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Note that the integral on the unit sphere in (3) is nothing but the integral kernel of F'F, where
F : LY(R3?) — L?(S?) is the Fourier transform defined as
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We denote by A the integral kernel of the second term of (2), thus we have
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Our aim is to prove that V2 Mg|V|2 is bounded on L2(R3) uniformly in E.
Indeed, in this case, 1 + )\V%ME|V|% would be invertible for small A > 0. Hence, we could
write
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Note that )\V%KEI |V |2 having eigenvalue —1 is equivalent to %V%}"T}'\V\% having
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%V%}'T}"\V\% is isospectral to the self-adjoint operator
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The Birman-Schwinger principle tell us that /\V%K51|V|% having eigenvalue —1 is equivalent
to Kg + AV having 0 as lowest eigenvalue, i.e. [p? — 1| + AV having —F as lowest eigenvalue.
As a consequence, the lowest eigenvalue —F would satisfy

eigenvalue —1. Moreover,
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Up to first order in A,
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where the error term O(\?) is uniformly bounded in E. In particular, we would have
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Hence, if V2 M E|V|% was uniformly bounded in F, it would follow that
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2. BOUNDEDNESS OF V' (p? + 1) 1|V|z

Let B* := {(z,y) € R* x R® : |(x,y)] < R*}, R* >0, Bp- := {z € R® : |z| < R*} and
X* = Xp,.. Let f; € L*(R3),i=1,2.
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where we used the weak Young inequality for r, ¢, w satisfying % + % + % =2.
Observe that g € L3, (R3), so that we can choose w = 3. Indeed,
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where w’ is the conjugate exponent of w. Since we want ||g||weak,w t0 be bounded, we choose
/

w' = %, thus w = 3. As a consequence, for w = 3 and r = ¢, we get r = g.

1% 1% .
(13) VXl < [ fill2[IVEXls, i =1,2.



Note that V' € L%(BRi), hence ||V 2X*||3 is bounded.
Let X := XB,, where R < R* such that B x By C B*.
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where we used the Young inequality for r, g, p satisfying % + % + % =2 Forp=1andr =gq,
we get r = 2.
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Note that V € L(R3\ Bj), hence ||V ZX|| is bounded.
Finally, since V € L2 + L°°, we can conclude that V2 TﬂlﬁWﬁ is bounded on L?(R?)
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By using spherical coordinates, we can rewrite it as
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Ag is uniformly bounded in E. Indeed, since % — Sigb < CIZ;;‘, then
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In particular,
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for large p.

However, the uniformly boundedness of Ag is not enough to have V%AE|V|% bounded on
L?(R3) in the case of the Coulomb potential. This suggest us to study the behavior of Ag(x)
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for large |x|.
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We thus deduce that Ag(x) < L for large |z, but this decay is not enough for the Coulomb

~ |z
potential. Hence, we could try to estimate the behavior of Ag(z) for large |x| in a sharper way
without letting F going to zero. However, also in this case, long computations lead to
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for large |z| and F << 1.

4. ANOTHER STRATEGY

Consider directly
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without splitting it into two terms as done in (2).
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From now on we will denote by " the Fuorier transform operator and by v its inverse.
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On the other hand, observe that
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where s,q satisfy 1 = % + %, thus s > 3.
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1 s 5 R p2
el = [ [] Pp=c [
lgells = f, =1+ E o (F—11EB)"

R 2
28 c/ dp=o00 fors>3.
(28) E=0 Jo (p—1)%(p+1)°

Analogously, we could write
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but also this does not seem to help. Indeed, we know that g; € H?_(R?), i = 1,2. However, by
using the Trace Theorem, we would only get the trace of g; belonging to L?(S?).



