ASYMPTOTIC BEHAVIOR OF THE SMALLEST EIGENVALUE OF A SCHROEDINGER-TYPE OPERATOR WITH COULOMB POTENTIAL

Alice Marveggio

ABSTRACT. The aim of the rotation was to investigate the asymptotic behavior of the smallest eigenvalue of the Schroedinger-type operator $|p^2 - 1| - \lambda |x|^{-1}$ for small λ , using the Birman-Schwinger principle. In this draft we collect some preliminary results we got and some attempts we tried to develop during our discussions.

1. Setting of the problem

Let V be the Coulomb potential, i.e. $V(x) = -\frac{1}{|x|}$. Consider $K_E = |p^2 - 1| + E$ for small E > 0.

(1)
$$V^{\frac{1}{2}} \frac{1}{K_E} |V|^{\frac{1}{2}} = V^{\frac{1}{2}} \left[\frac{1}{K_E} - \frac{1}{p^2 + 1} \right] |V|^{\frac{1}{2}} + V^{\frac{1}{2}} \frac{1}{p^2 + 1} |V|^{\frac{1}{2}}$$

(2)
$$\int_{\mathbb{R}^{3}} e^{ip \cdot (x-y)} \left[\frac{1}{K_{E}} - \frac{1}{p^{2}+1} \right] \mathrm{d}^{3}p = \int_{\mathbb{R}^{3}} e^{i\frac{p}{|p|} \cdot (x-y)} \left[\frac{1}{K_{E}} - \frac{1}{p^{2}+1} \right] \mathrm{d}^{3}p + \int_{\mathbb{R}^{3}} \left(e^{ip \cdot (x-y)} - e^{i\frac{p}{|p|} \cdot (x-y)} \right) \left[\frac{1}{K_{E}} - \frac{1}{p^{2}+1} \right] \mathrm{d}^{3}p$$

The first term of (2) can be rewritten as

(3)
$$\int_{\mathbb{R}^3} e^{i\frac{p}{|p|} \cdot (x-y)} \left[\frac{1}{K_E} - \frac{1}{p^2 + 1} \right] \mathrm{d}^3 p = m(E) \int_{\mathbb{S}^2} e^{i\omega \cdot (x-y)} \,\mathrm{d}\omega$$

where

(4)
$$m(E) := \int_0^{+\infty} \left[\frac{1}{K_E} - \frac{1}{p^2 + 1} \right] p^2 \, \mathrm{d}p \, .$$

Note that the integral on the unit sphere in (3) is nothing but the integral kernel of $\mathcal{F}^{\dagger}\mathcal{F}$, where $\mathcal{F}: L^1(\mathbb{R}^3) \to L^2(\mathbb{S}^2)$ is the Fourier transform defined as

$$(\mathcal{F}\phi)(p) := \frac{1}{2\pi^{\frac{3}{2}}} \int_{\mathbb{R}^3} \phi(x) e^{ip \cdot x} \,\mathrm{d}^3 x$$

We denote by A_E the integral kernel of the second term of (2), thus we have

$$\frac{1}{K_E} - \frac{1}{p^2 + 1} = m(E)\mathcal{F}^{\dagger}\mathcal{F} + A_E.$$

Moreover, we define

$$M_E := \frac{1}{K_E} - m(E)\mathcal{F}^{\dagger}\mathcal{F} = A_E + \frac{1}{p^2 + 1}.$$

Our aim is to prove that $V^{\frac{1}{2}}M_E|V|^{\frac{1}{2}}$ is bounded on $L^2(\mathbb{R}^3)$ uniformly in E. Indeed, in this case, $1 + \lambda V^{\frac{1}{2}}M_E|V|^{\frac{1}{2}}$ would be invertible for small $\lambda > 0$. Hence, we could write

(5)
$$1 + \lambda V^{\frac{1}{2}} K_E^{-1} |V|^{\frac{1}{2}} = 1 + \lambda V^{\frac{1}{2}} (m(E) \mathcal{F}^{\dagger} \mathcal{F} + M_E) |V|^{\frac{1}{2}} = \\ = (1 + \lambda V^{\frac{1}{2}} M_E |V|^{\frac{1}{2}}) \left(1 + \frac{\lambda m(E)}{1 + \lambda V^{\frac{1}{2}} M_E |V|^{\frac{1}{2}}} V^{\frac{1}{2}} \mathcal{F}^{\dagger} \mathcal{F} |V|^{\frac{1}{2}} \right).$$

Note that $\lambda V^{\frac{1}{2}} K_E^{-1} |V|^{\frac{1}{2}}$ having eigenvalue -1 is equivalent to $\frac{\lambda m(E)}{1+\lambda V^{\frac{1}{2}} M_E |V|^{\frac{1}{2}}} V^{\frac{1}{2}} \mathcal{F}^{\dagger} \mathcal{F} |V|^{\frac{1}{2}}$ having eigenvalue -1. Moreover, $\frac{\lambda m(E)}{1+\lambda V^{\frac{1}{2}} M_E |V|^{\frac{1}{2}}} V^{\frac{1}{2}} \mathcal{F}^{\dagger} \mathcal{F} |V|^{\frac{1}{2}}$ is isospectral to the self-adjoint operator $\mathcal{F} |V|^{\frac{1}{2}} \frac{\lambda m(E)}{1+\lambda V^{\frac{1}{2}} M_E |V|^{\frac{1}{2}}} V^{\frac{1}{2}} \mathcal{F}^{\dagger}$ acting on $L^2(\mathbb{S}^2)$.

The Birman-Schwinger principle tell us that $\lambda V^{\frac{1}{2}} K_E^{-1} |V|^{\frac{1}{2}}$ having eigenvalue -1 is equivalent to $K_E + \lambda V$ having 0 as lowest eigenvalue, i.e. $|p^2 - 1| + \lambda V$ having -E as lowest eigenvalue. As a consequence, the lowest eigenvalue -E would satisfy

(6)
$$\lambda m(E) \inf \operatorname{spec} \mathcal{F}|V|^{\frac{1}{2}} \frac{\lambda m(E)}{1 + \lambda V^{\frac{1}{2}} M_E |V|^{\frac{1}{2}}} \mathcal{F}^{\dagger} = -1.$$

Up to first order in λ ,

(7)
$$\lambda m(E) \inf \operatorname{spec} \mathcal{F}|V|^{\frac{1}{2}} [1 - \lambda V^{\frac{1}{2}} M_E |V|^{\frac{1}{2}} + O(\lambda^2)] V^{\frac{1}{2}} \mathcal{F}^{\dagger} = -1,$$

where the error term $O(\lambda^2)$ is uniformly bounded in E. In particular, we would have

(8)
$$\lambda m(E) = \frac{-1}{\inf \operatorname{spec} \left[\mathcal{F}V\mathcal{F}^{\dagger} - \lambda \mathcal{F}VM_E V\mathcal{F}^{\dagger} + O(\lambda^2)\right]}$$

Hence, if $V^{\frac{1}{2}}M_E|V|^{\frac{1}{2}}$ was uniformly bounded in E, it would follow that

(9)
$$\lim_{\lambda \to 0} \lambda m(E) = -\frac{1}{\inf \operatorname{spec} \mathcal{F} V \mathcal{F}^{\dagger}}.$$

2. Boundedness of $V^{\frac{1}{2}}(p^2+1)^{-1}|V|^{\frac{1}{2}}$

Let $B^* := \{(x, y) \in \mathbb{R}^3 \times \mathbb{R}^3 : |(x, y)| \le R^*\}, R^* > 0, B_{R^*} := \{x \in \mathbb{R}^3 : |x| \le R^*\}$ and $\chi^* := \chi_{B_{R^*}}$. Let $f_i \in L^2(\mathbb{R}^3), i = 1, 2$.

(10)
$$\langle f_1 | V^{\frac{1}{2}} \frac{1}{p^2 + 1} | V |^{\frac{1}{2}} | f_2 \rangle = \int_{\mathbb{R}^3 \times \mathbb{R}^3} f_1(x) V^{\frac{1}{2}}(x) \frac{e^{-|x-y|}}{|x-y|} | V |^{\frac{1}{2}}(y) f_2(y) \, \mathrm{d}^3 x \, \mathrm{d}^3 y = I_a + I_b$$

Let $g(x) := \frac{e^{-|x|}}{|x|}, x \in \mathbb{R}^3.$

(1

$$|I_{a}| = \left| \int_{B^{*}} f_{1}(x) V^{\frac{1}{2}}(x) g(x-y) |V|^{\frac{1}{2}}(y) f_{2}(y) d^{3}x d^{3}y \right|$$

$$\leq \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} |f_{1}(x) V^{\frac{1}{2}}|(x) \chi^{*}(x) g(x-y) |V|^{\frac{1}{2}}(y) |f_{2}|(y) \chi^{*}(y) d^{3}x d^{3}y$$

$$\leq K_{r,q,w;3} ||f_{1} V^{\frac{1}{2}} \chi^{*}||_{r} ||f_{2}|V|^{\frac{1}{2}} \chi^{*}||_{q} ||g||_{weak,w},$$

where we used the weak Young inequality for r, q, w satisfying $\frac{1}{r} + \frac{1}{q} + \frac{1}{w} = 2$. Observe that $g \in L^3_{weak}(\mathbb{R}^3)$, so that we can choose w = 3. Indeed,

(12)
$$\begin{aligned} ||g||_{weak,w} &= \sup_{A} \frac{1}{|A|^{\frac{1}{w'}}} \int_{A} \frac{e^{-|x|}}{|x|} \, \mathrm{d}^{3}x = \sup_{R} cR^{-\frac{3}{w'}} \int_{0}^{R} \frac{e^{-r}}{r} r^{2} \, \mathrm{d}r \\ &\leq \sup_{R} cR^{-\frac{3}{w'}} \int_{0}^{R} \frac{1}{r} r^{2} \, \mathrm{d}r = \sup_{R} cR^{-\frac{3}{w'}} R^{2} \,, \end{aligned}$$

where w' is the conjugate exponent of w. Since we want $||g||_{weak,w}$ to be bounded, we choose $w' = \frac{3}{2}$, thus w = 3. As a consequence, for w = 3 and r = q, we get $r = \frac{6}{5}$.

(13)
$$||f_i V^{\frac{1}{2}} \chi^*||_{\frac{6}{5}} \le ||f_i||_2 ||V^{\frac{1}{2}} \chi^*||_3, \ i = 1, 2.$$

Note that $V \in L^{\frac{3}{2}}(B_{R^*})$, hence $||V^{\frac{1}{2}}\chi^*||_3$ is bounded. Let $\tilde{\chi} := \chi_{B_{\tilde{R}}}$, where $\tilde{R} < R^*$ such that $B_{\tilde{R}} \times B_{\tilde{R}} \subset B^*$.

(14)
$$|I_b| = \left| \int_{\mathbb{R}^3 \times \mathbb{R}^3 \setminus B^*} f_1(x) V^{\frac{1}{2}}(x) g(x-y) |V|^{\frac{1}{2}}(y) f_2(y) \,\mathrm{d}^3 x \,\mathrm{d}^3 y \right|^{\frac{1}{2}} \leq C_{r,q,p;3} ||f_1 V^{\frac{1}{2}} \tilde{\chi}||_r ||f_2|V|^{\frac{1}{2}} \tilde{\chi}||_q ||g||_p \,,$$

where we used the Young inequality for r, q, p satisfying $\frac{1}{r} + \frac{1}{q} + \frac{1}{p} = 2$. For p = 1 and r = q, we get r = 2.

(15)
$$||f_i V^{\frac{1}{2}} \tilde{\chi}||_2 \le ||f_i||_2 ||V^{\frac{1}{2}} \tilde{\chi}||_{\infty}, \ i = 1, 2.$$

Note that $V \in L^{\infty}(\mathbb{R}^3 \setminus B_{\tilde{R}})$, hence $||V^{\frac{1}{2}}\tilde{\chi}||_{\infty}$ is bounded. Finally, since $V \in L^{\frac{3}{2}} + L^{\infty}$, we can conclude that $V^{\frac{1}{2}}\frac{1}{p^2+1}|V|^{\frac{1}{2}}$ is bounded on $L^2(\mathbb{R}^3)$

3. Boundedness of $V^{\frac{1}{2}}A_E|V|^{\frac{1}{2}}$

Consider

$$\int_{\mathbb{R}^3} \left(e^{ip \cdot (x-y)} - e^{i \frac{p}{|p|} \cdot (x-y)} \right) \left[\frac{1}{K_E} - \frac{1}{p^2 + 1} \right] \mathrm{d}^3 p \,.$$

By using spherical coordinates, we can rewrite it as

$$\begin{aligned} &2\pi \int_0^\infty \mathrm{d}p \, p^2 \bigg[\frac{1}{|p^2 - 1| + E} - \frac{1}{p^2 + 1} \bigg] \int_0^\pi \mathrm{d}\theta \, \sin\theta (e^{ip\cos\theta |x-y|} - e^{i\cos\theta |x-y|}) = \\ &= 2\pi \int_0^\infty \mathrm{d}p \, p^2 \bigg[\frac{1}{|p^2 - 1| + E} - \frac{1}{p^2 + 1} \bigg] \int_{-1}^1 \mathrm{d}r \, (e^{ipr|x-y|} - e^{ir|x-y|}) = \\ &= 2\pi \int_0^\infty \mathrm{d}p \, p^2 \bigg[\frac{1}{|p^2 - 1| + E} - \frac{1}{p^2 + 1} \bigg] \bigg[\frac{\sin(p|x-y|)}{p|x-y|} - \frac{\sin(|x-y|)}{|x-y|} \bigg]. \end{aligned}$$

Let

(16)
$$\mathcal{A}_E(x) := \frac{2\pi}{|x|} \int_0^\infty \mathrm{d}p \, p^2 \left[\frac{1}{|p^2 - 1| + E} - \frac{1}{p^2 + 1} \right] \left[\frac{\sin(p|x|)}{p} - \sin(|x|) \right].$$

 \mathcal{A}_E is uniformly bounded in *E*. Indeed, since $\frac{\sin a}{a} - \frac{\sin b}{b} \leq c \frac{|a-b|}{|a+b|}$, then

(17)
$$|\mathcal{A}_E(x)| \le c \int_0^\infty dp \, p^2 \left| \frac{1}{|p^2 - 1| + E} - \frac{1}{p^2 + 1} \right| \frac{|p - 1|}{p + 1}$$

In particular,

(18)
$$|\mathcal{A}_0(x)| \le c \int_0^\infty p^2 \left| \frac{1}{(p+1)^2} - \frac{|p-1|}{p^2+1} \right| \mathrm{d}p < \infty \,,$$

because

$$p^2 \left| \frac{1}{(p+1)^2} - \frac{|p-1|}{p^2+1} \right| \sim \frac{1}{p^2}$$

for large p.

However, the uniformly boundedness of \mathcal{A}_E is not enough to have $V^{\frac{1}{2}}A_E|V|^{\frac{1}{2}}$ bounded on $L^2(\mathbb{R}^3)$ in the case of the Coulomb potential. This suggest us to study the behavior of $\mathcal{A}_E(x)$

for large |x|.

$$\begin{aligned} |\mathcal{A}_{0}(x)| &\leq \frac{2\pi}{|x|} \int_{1-\frac{1}{|x|}}^{1+\frac{1}{|x|}} p \left| \frac{1}{|p-1|(p+1)} - \frac{1}{p^{2}+1} \right| |\sin(p|x|) - p\sin(|x|) \pm \sin(|x|)| \, dp \\ &\quad + \frac{2\pi}{|x|} \int_{0}^{1-\frac{1}{|x|}} p^{2} \left| \frac{1}{|p^{2}-1|} - \frac{1}{p^{2}+1} \right| \left| 1 + \frac{1}{p} \right| \, dp \\ &\quad + \frac{2\pi}{|x|} \int_{1+\frac{1}{|x|}}^{1+\frac{1}{|x|}} p^{2} \left| \frac{1}{|p^{2}-1|} - \frac{1}{p^{2}+1} \right| \left| 1 + \frac{1}{p} \right| \, dp \\ &\leq \frac{2\pi}{|x|} \int_{1-\frac{1}{|x|}}^{1+\frac{1}{|x|}} p \frac{2}{(p+1)(p^{2}+1)} |\sin(|x|) + c|x|| \, dp \\ &\quad + \frac{2\pi}{|x|} \int_{0}^{1-\frac{1}{|x|}} \frac{2p^{2}}{(p+1)(p^{2}+1)(1-p)} \left| 1 + \frac{1}{p} \right| \, dp \\ &\quad + \frac{2\pi}{|x|} \int_{1+\frac{1}{|x|}}^{1+\frac{1}{|x|}} \frac{2p^{2}}{(p+1)(p^{2}+1)(p-1)} \left| 1 + \frac{1}{p} \right| \, dp \\ &\quad \leq \frac{2\pi}{|x|} [1 + c|x|] \int_{1-\frac{1}{|x|}}^{1+\frac{1}{|x|}} \frac{2}{p^{2}+1} \, dp \\ &\quad + \frac{2\pi}{|x|} \int_{0}^{1-\frac{1}{|x|}} \frac{2p}{(p-1)(p^{2}+1)} \, dp \\ &\quad + \frac{2\pi}{|x|} \int_{0}^{1-\frac{1}{|x|}} \frac{2p}{(p-1)(p^{2}+1)} \, dp \\ &\quad + \frac{2\pi}{|x|} \int_{0}^{1-\frac{1}{|x|}} \frac{2p}{(p-1)(p^{2}+1)} \, dp \end{aligned}$$
(19)

We thus deduce that $\mathcal{A}_E(x) \lesssim \frac{1}{|x|}$ for large |x|, but this decay is not enough for the Coulomb potential. Hence, we could try to estimate the behavior of $\mathcal{A}_E(x)$ for large |x| in a sharper way without letting E going to zero. However, also in this case, long computations lead to

$$\mathcal{A}_{E}(x) \leq -(2-E)\log\left(1 - \frac{1}{(\sqrt{1+E}+1)|x|}\right) + (2-E)\log\left(1 + \frac{1}{(\sqrt{1+E}+1)|x|}\right) - (2-E)\log\left(1 + \frac{1}{\sqrt{1+E}} - \frac{1}{(\sqrt{1+E}+1)|x|}\right) + \frac{c}{|x|}\frac{2-E}{\sqrt{1-E}}\left[\log\left(1 - \sqrt{1-E} + \frac{1}{|x|}\right) - \log\left(1 + \sqrt{1-E} + \frac{1}{|x|}\right)\right]$$
(20)

for large |x| and E << 1.

4. Another strategy

Consider directly

(21)
$$\int_{\mathbb{R}^3} e^{ip \cdot (x-y)} \left[\frac{1}{K_E} - \frac{1}{p^2 + 1} \right] \mathrm{d}^3 p =: \mathcal{D}_E(x-y)$$

without splitting it into two terms as done in (2).

$$\langle f_1 | V^{\frac{1}{2}} \mathcal{D}_E | V |^{\frac{1}{2}} | f_2 \rangle$$

$$= \int_{\mathbb{R}^3 \times \mathbb{R}^3} f_1(x) V^{\frac{1}{2}}(x) \left(\int_{\mathbb{R}^3} e^{ip \cdot (x-y)} \left[\frac{1}{|p^2 - 1| + E} - \frac{1}{p^2 + 1} \right] \mathrm{d}^3 p \right) | V |^{\frac{1}{2}}(y) f_2(y) \, \mathrm{d}^3 x \, \mathrm{d}^3 y =$$

$$(22)$$

$$= \int_{\mathbb{R}^3} \left[\frac{1}{|p^2 - 1| + E} - \frac{1}{p^2 + 1} \right] \left(\int_{\mathbb{R}^3} \frac{f_1(x)}{|x|^{\frac{1}{2}}} e^{ip \cdot x} \, \mathrm{d}^3 x \right) \left(\int_{\mathbb{R}^3} \frac{f_2(y)}{|y|^{\frac{1}{2}}} e^{-ip \cdot y} \, \mathrm{d}^3 y \right) \mathrm{d}^3 p$$
From now on we will denote by \wedge the Fuerier transform operator and by \vee its inverse.

From now on we will denote by $^{\wedge}$ the Fuorier transform operator and by $^{\vee}$ its inverse.

(23)
$$\int_{\mathbb{R}^3} \frac{f_1(x)}{|x|^{\frac{1}{2}}} e^{ip \cdot x} d^3 x = \hat{f}_1(p) * \left[\frac{1}{|x|^{\frac{1}{2}}}\right]^{\wedge} = \hat{C}_{3,\frac{1}{2}} \hat{f}_1(p) * \frac{1}{|p|^{\frac{5}{2}}} =: g_1(p)$$

(24)
$$\int_{\mathbb{R}^3} \frac{f_2(y)}{|y|^{\frac{1}{2}}} e^{-ip \cdot y} \,\mathrm{d}^3 y = \check{f}_2(p) * \left[\frac{1}{|x|^{\frac{1}{2}}}\right]^{\vee} = \check{C}_{3,\frac{1}{2}}\check{f}_2(p) * \frac{1}{|p|^{\frac{5}{2}}} =: g_2(p)$$

We thus obtain

(25)
$$\langle f_1 | V^{\frac{1}{2}} \mathcal{D}_E | V |^{\frac{1}{2}} | f_2 \rangle = C_{3,\frac{1}{2}} \int_{\mathbb{R}^3} \left[\frac{1}{|p^2 - 1| + E} - \frac{1}{p^2 + 1} \right] g_1(p) g_2(p) \, \mathrm{d}^3 p \, .$$

Notice that $|p|^{-\frac{5}{2}}$ is the Green's function for Δ^{α} when $\alpha = \frac{1}{4}$. Hence,

(26)
$$\Delta^{\frac{1}{4}} \left(\hat{f}_i(p) * \frac{1}{|p|^{\frac{5}{2}}} \right) = \hat{f}_i(p), \ i = 1, 2$$

Furthermore, since $\hat{f}_i \in L^2(\mathbb{R}^3)$, then $g_i \in H^{\frac{1}{2}}_{loc}(\mathbb{R}^3) \hookrightarrow L^q_{loc}(\mathbb{R}^3)$, $q \leq 3$, i = 1, 2. On the other hand, observe that

$$\left[\frac{1}{K_E} - \frac{1}{p^2 + 1}\right] \sim \frac{\chi_{B_R}(p)}{|p^2 - 1| + E} =: \tilde{g}_E(p).$$

Hence,

(28)

(27)
$$\langle f_1 | V^{\frac{1}{2}} \mathcal{D}_E | V |^{\frac{1}{2}} | f_2 \rangle \sim \int_{\mathbb{R}^3} \frac{\chi_{B_R}}{|p^2 - 1| + E} g_1(p) g_2(p) \, \mathrm{d}^3 p \le ||\tilde{g}_E||_s ||g_1||_q ||g_2||_q \,,$$

where s,q satisfy $1 = \frac{2}{q} + \frac{1}{s}$, thus $s \ge 3$. However,

$$\begin{split} ||\tilde{g}_E||_s^s &= \int_{B_R} \left[\frac{1}{|p^2 - 1| + E} \right]^s \mathrm{d}^3 p = c \int_0^R \frac{p^2}{(|p^2 - 1| + E)^s} \,\mathrm{d}p \\ &= \frac{1}{E \to 0} c \int_0^R \frac{p^2}{(p - 1)^s (p + 1)^s} \,\mathrm{d}p = \infty \quad \text{for } s \ge 3 \,. \end{split}$$

Analogously, we could write

(29)
$$\langle f_1 | V^{\frac{1}{2}} A_E | V |^{\frac{1}{2}} | f_2 \rangle \sim \int_{\mathbb{R}^3} \tilde{g}(|p|) \left[g_1(p) g_2(p) - g_1\left(\frac{p}{|p|}\right) g_2\left(\frac{p}{|p|}\right) \right] \mathrm{d}^3 p$$
$$\sim \int_0^\infty \tilde{g}(p) \left(\int_{\mathbb{S}^2} \left[g_1(p\omega) g_2(p\omega) - g_1(\omega) g_2(\omega) \right] \mathrm{d}\omega \right) \mathrm{d}p \,,$$

but also this does not seem to help. Indeed, we know that $g_i \in H^{\frac{1}{2}}_{loc}(\mathbb{R}^3)$, i = 1, 2. However, by using the Trace Theorem, we would only get the trace of g_i belonging to $L^2(\mathbb{S}^2)$.