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Abstract

In this paper, we investigate the BCS cricital temperature, Tc, at high densities
in spatial dimensions d = 2 and d = 3. We find that the behavior of Tc for high
densities strongly depends on the behavior of the interaction potential V near
the Fermi-surface and provide asymptotic formulas for the critical temperature
in this limit. Our results include a rigorous confirmation for the behavior of Tc at
high densities proposed by Langmann et al. in [14], from which they concluded
the ubiquity of superconducting domes in BCS theory, which were observed, e.g.,
in doped band insulators or magic-angle graphene.

1 Introduction

The BCS gap equation [2]

∆(p) = − 1

(2π)d/2

∫
Rd
V̂ (p− q)∆(q)

E(q)
tanh

(
E(q)

2T

)
dq , (1)

with E(p) =
√

(p2 − µ)2 + |∆(p)|2, has an important role in physics since its intro-
duction. The function ∆ is interpreted as the order parameter describing paired
Fermions (Cooper pairs) interacting via the local pair potential 2V , where V̂ (p) =
(2π)−d/2

∫
Rd V (x)e−ip·xdx denotes its Fourier transform. The parameters T and µ are

the temperature and the chemical potential, respectively. The chemical potential µ
might be interpreted as the density of Fermions.

In this paper we are interested in the critical temperature for the existence of non-
trivial solutions of the BCS gap equation (1) in the high-density limit for dimensions
d = 2 and d = 3. There are already rigorous results in the low-density [9] and weak
coupling regime [5, 8]. Investigating the high-density limit of the critical temperature
is especially relevant for explaining superconducting domes [12, 4, 19, 18, 20, 3], i.e. a
non-monotonic Tc(µ) exhibiting a maximum value at finite µ and going to zero for large
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µ. In a recent paper [14], Langmann et al. claim the ubiquity of superconducting domes
in BCS theory with finite-range potentials, but only for pure s-wave superconductivity
(i.e. angular momentum ` = 0, see Corollary 1). Their result disproves the conventional
wisdom, that the presence of a superconducting dome necessarily indicates some kind
of exotic superconductivity, e.g. resulting from competing orders. Our results are in
particular relevant for doped band insulators [20] and magic-angle graphene [3], where
no competing orders occur, and thus a more conventional explanation is necessary. The
observation of superconducting domes in magic-angle graphene is the main motivation
for studying the case d = 2.

There is a simple physical picture arising from an interplay of length scales, that
explains the ubiquity of superconducting domes (see [14]). If the effective range ξ of the
interaction is much smaller than the mean interparticle distance µ−1/2, i.e. ξ � µ−1/2, we
can increase Tc by increasing µ as predicted by standard BCS theory [2] and rigorously
justified in [9]. Whereas, at high densities, i.e. ξ � µ−1/2, the pairing of the electrons
near the Fermi surface becomes weaker with increasing µ due to the decay of the
interaction in Fourier space, suppressing Tc towards zero. Therefore, at intermediate
densities, where ξ ∼ µ−1/2, a superconducting dome arises. This simple argument is
reflected in our results by the presence of the operator V(d)

µ , defined in (2), acting on
functions on the (rescaled) Fermi surface.

Our results are threefold: first, we confirm the claims from Langmann et al. [14] on
the critical temperature at high densitites for s-wave superconductivity (to lowest order)
by proving a more general result for radially symmetric interaction potentials V in d = 3
(Theorem 1 and Corollary 1); second, we provide upper and lower bounds for general
non-sperically symmetric interaction potentials, partially based on a method used by
Gontier et al. in [6], again for d = 3 (Theorem 2); third, we derive the asymptotic
behavior of Tc at high densities in full generality for d = 2 (Theorem 3).

2 Main Results

2.1 Preliminaries

It was proven in [7] (see also [11] for a more recent review) that the critical temper-
ature for the existence of non-trivial solutions of the BCS gap equation (1) can be
characterized as follows.

Definition 1 (Critical Temperature). Let µ > 0, d = 2, 3 and

V ∈

{
L1+ε(R2) if d = 2

L3/2(R3) if d = 3

be real-valued. Let KT,µ denote the multiplication operator in momentum space

KT,µ(p) =
|p2 − µ|

tanh
(
|p2−µ|
2T

) .
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The critical temperature for the BCS gap equation is given by

Tc = inf {T > 0 | KT,µ(p) + V (x) ≥ 0} .

One might think of the operator KT,µ(p)+V (x) as the Hessian in the BCS functional
of superconductivity (see [11]), where the positivity is related to the “stability” of a
superconducting state, which is related to the existence of a non-trivial solution of (1).
Note, that by the Sobolev inequality (Theorem 8.3 and 8.5 in [17]) Tc is well defined
for both cases d = 2, 3, as the continuous spectrum of KT,µ starts at 2T for any µ and
KT,µ ∼ p2 for large |p|.

Moreover, note that KT,µ vanishes on the codim−1 submanifold { p2 = µ }, where
its resolvent diverges. Thus, similarly to the weak coupling situation [5] and as pointed
out by Laptev, Safronov and Weidl, [15] (see also [10]), the spectrum of KT,µ + V is
mainly determined by the behavior of V near { p2 = µ }, i.e. the Fermi sphere. More
precisely, as empasized in the introduction, a crucial role for the investigation of Tc in
the high-density limit is played by the (rescaled) operator V(d)

µ : L2(Sd−1) → L2(Sd−1)
where (

V(d)
µ u

)
(p) =

1

(2π)d/2

∫
Sd−1

V̂ (
√
µ(p− q))u(q) dω(q) . (2)

The evaluation of V̂ on a codim−1 submanifold is well defined by the Riemann-Lebesgue
Lemma for V ∈ L1(Rd). The lowest eigenvalue of V(d)

µ , which we denote by

e(d)µ = infspecV(d)
µ

will be of particular importance. Note, that V(d)
µ is a compact operator (so e

(d)
µ ≤ 0),

which is in fact trace class with

tr(V(d)
µ ) =

∣∣Sd−1∣∣
(2π)d

∫
Rd
V (x)dx .

The case e
(d)
µ < 0 which will be important for our main theorems as it corresponds to an

attractive interaction between (some) electrons on the Fermi sphere. Since V(d)
µ is trace

class, a sufficient condition for e
(d)
µ < 0 is that the trace of V(d)

µ is negative, i.e.
∫
V < 0.

Moreover, by considering a trial function that is concentrated on two small sets on the
rescaled Fermi sphere Sd−1 separated by a distance |p| < 2, one can easily see that

e
(d)
µ < 0 if |V̂ (p)| > V̂ (0) for some |p| < 2

√
µ.

In the special case of radial potentials V depending only on |x|, the spectrum of

V(d)
µ can be determined more explicitly (see, e.g., [5]). If V is radially symmetric,

the eigenfunctions of V(d)
µ are spherical harmonics or circular harmonics for d = 2, 3,

respectively. The corresponding eigenvalues are given by∣∣Sd−1∣∣
(2π)d

∫
Rd
V (x)

(
f
(d)
` (
√
µ|x|)

)2
dx ,
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where f
(2)
` = J` (Bessel function of the first kind) and f

(3)
` = j` =

√
π
2x
J
`+

1
2

(spherical

Bessel function) and thus

e(d)µ =

∣∣Sd−1∣∣
(2π)d

inf
`∈N0

∫
Rd
V (x)

(
f
(d)
` (
√
µ|x|)

)2
dx .

Note that in this case we can bound

|e(d)µ | ≤
∣∣Sd−1∣∣
(2π)d

∥∥∥∥ V

| · |d−2+α

∥∥∥∥
1

sup
`∈N0

∥∥∥| · | d−2+α
2 f

(d)
`

∥∥∥
∞

1

µ
d−2+α

2

(3)

by Hölder to get a simple estimate on the behavior of e
(d)
µ after supposing a certain

integrability condition on V . The term involving f
(d)
` is finite as long as α ≤ 2/3, which

was shown in [13] (see also the proof of Theorem 1). If additionally V̂ ≤ 0, the minimal
eigenvalue is attained for the constant eigenfunction (i.e. the circular resp. spherical
harmonic with ` = 0) by the Perron-Frobenius Theorem and we thus have the more
concrete expression

e(d)µ =

∣∣Sd−1∣∣
(2π)d

∫
Rd
V (x)

(
f
(d)
0 (
√
µ|x|)

)2
dx . (4)

Here, the same bound holds as in (3) but the threshold of α ≤ 2/3 can be pushed to
α ≤ 1 as there is no sup`∈N0

involved.

We emphasized above, that e
(d)
µ will play a prominent role in the following subsec-

tion. As it strongly depends on the concrete form of the interaction, we cannot give
more explicit formulas, but the bound obtained in (3) and the special case of s-wave

superconductivity (4) allows us to get an idea about the effective role of e
(d)
µ in the

asymptotic formulas given below.

2.2 Results

As mentioned in the introduction, our results are threefold: First, we show the asymp-
totic formula for d = 3 and radial potentials, including the rigorous confirmation of the
result from Langmann et al. [14] (Theorem 1 and Corollary 1). Afterwards, we provide
upper and lower bounds in d = 3 for potentials which are no longer radially symmetric
(Theorem 2). Finally, we give the corresponding asymptotic formula in full generality
for d = 2 (Theorem 3).

Theorem 1. Let d = 3. Let V ∈ L1(R3)∩L3/2(R3) be real-valued and radially symmet-

ric. Assume that there exists µ0 > 0 such that for all µ ≥ µ0 we have e
(3)
µ < 0. Then

Tc(µ) > 0 for all sufficiently large µ and

lim
µ→∞

√
µ e(3)µ ln

(
µ

Tc

)
= −1. (5)
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Or in other words, we have the asymptotic behavior

Tc ∼ µ e1/(
√
µe

(3)
µ )

in the limit of large µ. Note, that the right hand side is the same formula as in the
weak-coupling case [5, 8] but with λ = 1. As a simple corollary, we rigorously confirm
the result from [14].

Corollary 1. Let V be as in Theorem 1 and assume additionally that V̂ ≤ 0. Note,
that this immediately implies that e

(3)
µ < 0 for all µ. Then, using the notation from

[14], we have

√
µe(3)µ =

√
µ

2π2

∫
Rd
V (x)

sin2(
√
µ|x|)

µ|x|2
dx =

1

4π2

f−2V (4µ)

4
√
µ

=: −λ

and thereby confirm the validity of eq. (6) from [14] in the high-density limit for leading
order, i.e.

Tc ∼ µ e−1/λ .

Proof. The first equality follows by (4) since j0(x) = sin(x)
x

. The second equality is a
simple computation using Fubini.

For more general interactions, which are not neccesarily radially symmetric, we
obtain upper and lower bounds on the critical temperature as our second result for
d = 3. The upper bound uses an estimate from [6], which was originally derived for
studies on a lower bound on the Hartree-Fock energy of the electron gas. This proof
will thus be somewhat different from the proofs of the other statements.

Theorem 2. Let d = 3.

(a) Let V be a real-valued measureable function with V | · | ∈ L∞(R3). Then

Tc . µ exp

(
−
√

π

2‖V | · |‖∞
µ1/4

)
. (6)

(b) Let V ∈ L1(R3) ∩ L3/2(R3) be real-valued but not neccesarily radially symmetric.

Assume that there exists µ0 > 0 such that for all µ ≥ µ0 we have e
(3)
µ < 0. Then

Tc & µ exp

(
ln(µ)

|o(1)|√µe(3)µ (V )

)
, (7)

where o(1) vanishes as µ→∞.
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Part (a) shows that the critical temperature vanishes for a very large class of inter-
action potentials in the limit µ→∞. Part (b) provides a lower bound that differs only
a little from the correct asymptotics for radially symmetric potentials in Theorem 1
and might hence serve as as starting point for proving the correct asymptotics for more
general potentials.

As a third result, we provide the high-density asymptotics of the critical temperature
in d = 2 for general interaction potentials without assuming radial symmetry.

Theorem 3. Let d = 2. Let V ∈ L1(R2) ∩ L1+ε(R2) be real-valued. Assume that there

exists µ0 > 0 such that for all µ ≥ µ0 we have e
(2)
µ (V ) < 0. Then Tc(µ) > 0 for all

sufficiently large µ and

lim
µ→∞

e(2)µ (V ) ln

(
µ

Tc

)
= −1 . (8)

This means that

Tc ∼ µ e1/e
(2)
µ

in analogy to the asymptotics obtained in Theorem 1 for d = 3.

2.3 Superconducting domes

We conclude this section with a short discussion about superconducting domes. Our re-
sults show for a very general class of interaction potentials that the critical temperature
in BCS theory vanishes in the limit µ→∞. The heuristic reasoning that the decay of
the interaction in Fourier space dominates the behavior of Tc in the high-density limit
is indeed reflected by the presence of e

(d)
µ in the asymptotic formulas. The existence of

a maximal critical temperature at some intermediate density (superconducting dome),
can be obtained by combining the decay of Tc in the high-density limit from our main
Theorems to the decay of Tc in the low-density limit, where

Tc ∼ µeπ/(2
√
µa)

as shown in [9]. This result was obtained for a class of integrable interaction potentials
with negative scattering length a in the absence of bound states. Thus, we rigorously
confirm the ubiquity of superconducting domes in BCS theory for a general class of
interaction potentials, claimed in [14]. As dicussed in the introduction, this is of par-
ticular interest as the presence of a superconducting dome has often been interpreted
as an indication of competing orders or some other kind of exotic superconductivity.

3 Proofs

The most important tool for our proofs will be the Birman-Schwinger principle (see
[7, 5, 11]). According to this principle, Tc is determined by the fact that for T = Tc the
smallest eigenvalue of

BT = V 1/2 1

KT,µ

|V |1/2
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equals −1. Here, we used the notation V (x)1/2 = sgn(V (x))|V (x)|1/2. The main simpli-
fication is that the study of the spectrum of the unbounded operator KT,µ + V reduces
to identifying the singular part of the compact Birman-Schwinger. With this in mind,
our proofs will all build on the same convenient decomposition of BT in a dominant
singular term and other error terms. Therefore, let F

(d)
µ : L1(Rd) → L2(Sd−1) denote

the Fourier transform restricted to Sd−1 with(
F(d)
µ ψ

)
(p) =

1

(2π)d/2

∫
Rd

ei
√
µp·xψ(x)dx ,

which is well-defined by the Riemann-Lebesgue Lemma. Since V ∈ L1(Rd), the multi-

plication with |V |1/2 is a bounded operator from L2(Rd) to L1(Rd), and hence F
(d)
µ |V |1/2

is a bounded operator from L2(Rd) to L2(Sd−1). Moreover, one of the key ideas in our
proofs is to study the asymptotic behavior of

m(d)
µ (T ) =

1

|Sd−1|

∫
Rd

(
1

KT,µ(p)
− 1

p2 + µ

)
dp

which was done in a similar way for the low-density and weak-coupling limit of the
critical temperature and the energy gap (see [8, 9, 11, 16]). One can easily show that

m(d)
µ (T ) ∼ µ

d−2
2 ln

(µ
T

)
(9)

as long as T/µ → 0 (see, e.g., [8]). Using the definitions above, we arrive at our
convenient decomposition, which we define as

BT = V 1/2 1

p2 + µ
|V |1/2 +m(d)

µ (T )V 1/2F(d)
µ

†
F(d)
µ |V |1/2 + A

(d)
T,µ , (10)

where A
(d)
T,µ is such that this holds. For the second term, note that

V 1/2F(d)
µ

†
F(d)
µ |V |1/2

is isospectral to V(d)
µ = F

(d)
µ V F

(d)
µ

†
. In fact, the spectra agree at first except possibly

at 0, but 0 is in both spectra as the operators are compact on an infinite dimensional
space.

This second term will be the dominant term, which is how the quantity e
(d)
µ appears

in the asymptotic formulae in our theorems. Whereas, the first and third term are
negligible error terms in the limit µ→∞. Showing this, is the objective of the proofs of
Theorem 1, Theorem 2 (b), and Theorem 3. Their main difference lies in the treatment

of A
(d)
T,µ. The proof of Theorem 2 (a) is based on a result of Gontier et al. in [6] and

will be somewhat different.
A priori, it is not clear, how Tc behaves at high densities. Therefore, before we go

to the proofs, let us fix the following
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Lemma 1. Tc = O(µ) as µ→∞.

Proof. Since tanh(t) ≤ min(1, t) for t ≥ 0, we have

KT,µ + V ≥ 1

2

(
|p2 − µ|+ 2T

)
+ V

≥ 1

2

(
p2 + µ+ 2V

)
+ (T − µ).

The first term is non-negative for sufficiently large µ by the conditions on V . Thus, by
Definition 1, we obtain Tc ≤ µ.

In the proofs below, we will in fact show that Tc = o(µ), so (9) gives the correct
asymptotic behavior.

Proof of Theorem 1. As outlined above, the strategy of the proof is to show that the
first and the third term in (10) vanish in operator norm in the high-density limit and
thus the asymptotic behavior is entirely determined by the spectrum of the operator in
the second term. We discuss this in detail now.

For the first term, note that the Fourier transform of 1
p2+µ

is given by e−
√
µ|x|

|x| , up to

a constant. Thus the Hilbert-Schmidt norm ‖ · ‖HS, which is always an upper bound
for the operator norm ‖ · ‖op, is given by∥∥∥∥V 1/2 1

p2 + µ
|V |1/2

∥∥∥∥2
HS

= C

∫
R3

dx

∫
R3

dy |V (x)|e
−√µ|x−y|

|x− y|
|V (y)|

which vanishes as µ→∞ by an application of the dominated convergence theorem in
combination with the Hardy-Littlewood-Sobolev inequality (Theorem 4.3 in [17]). Here
and the following, we shall use the notation C for generic positive constants, possible
having a different value in each appearance.

For the third term, we will heavily use the radiality of V . In fact, since V is
radially symmetric, every eigenfunction of KT,µ and thus BT will have definite angular
momentum and we can focus on f ∈ L2(R3) of the form f(x) = f(|x|)Y m

` (x̂), with a
slight abuse of notation, where x̂ = x/|x| denotes the unit vector in direction x. Now
we aim to bound 〈f, AT,µf〉 uniformly in ` (and m). As AT,µ has integral kernel

AT,µ(x, y) = CV 1/2(x)|V (y)|1/2
∫
R3

(
1

KT,µ(p)
− 1

p2 + µ

)(
eip·(x−y) − ei

√
µp̂·(x−y)) dp ,

and using the radial symmetry of V we arrive at

〈f, AT,µf〉 = C

∫ ∞
0

d|x| |x|2
∫ ∞
0

d|y| |y|2f̄(|x|)V 1/2(|x|)|V (|y|)|1/2f(|y|) (11)

×
∫
R3

dp

(
1

KT,µ(p)
− 1

p2 + µ

)
(12)
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×
∫
S2

dω(x)

∫
S2

dω(y)Y
m

` (x̂)Y m
` (ŷ)

(
eip·(x−y) − ei

√
µp̂·(x−y)) . (13)

The last line (13) evaluates to

16π2 (j`(|p||x|)j`(
√
µ|y|)− j`(

√
µ|x|)j`(|p||y|))Y

m

` (p̂)Y m
` (p̂) .

After performing the angular integration from the second line (12) and writing x and
y instead of |x| and |y|, respectively, these two lines combine to∫ ∞

0

dp p2
(

1

KT,µ(p)
− 1

p2 + µ

)
(j`(px)j`(py)− j`(

√
µx)j`(

√
µy)) . (14)

In order to bound this quantity uniformly in `, we need the following properties of the
spherical Bessel functions:

(i) uniform boundedness, i.e. sup`∈N0
supx≥0 |j`(x)| ≤ 1

(ii) uniform decay, i.e. sup`∈N0
supx≥0 |x5/6j`(x)| ≤ c for some universal constant c > 0

(see [13])

(iii) uniform Lipschitz continuity, i.e. sup`∈N0
supx≥0 |j′`(x)| ≤ 1. This follows from the

uniform boundedness and the recursion relation [1]

j′` =
1

2`+ 1
(`j`−1 − (`+ 1)j`+1) .

Using these properties and applying the variable transformation p → p/
√
µ in the

integral, we obtain

|(14)| ≤ C µ1/3

∫ ∞
0

(
|j`(p
√
µx)|+ |j`(

√
µx)|

y1/3
+
|j`(p
√
µy)|+ |j`(

√
µy)|

x1/3

)
×
∣∣∣∣ 1

KT/µ,1(p)
− 1

p2 + 1

∣∣∣∣ |p− 1|1/3(p+ p2) dp

with the aid of the triangle inequality. By employing Hölder for the integrals over x
and y in (11), we get

|〈f, AT,µf〉| ≤ C µ1/3 ‖f‖22
∥∥∥∥ V

| · |2/3

∥∥∥∥1/2
1

(15)

×
∫ ∞
0

dp

∣∣∣∣ 1

KT/µ,1(p)
− 1

p2 + 1

∣∣∣∣ |p− 1|1/3(p+ p2)

×
∫
R3

dx |V (x)|
(
|j`(p
√
µ|x|)|2 + |j`(

√
µ|x|)|2

)
. (16)
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Note, that the norm in (15) is finite since V ∈ L3/2(R3). In Lemma 2 below, we show
that the last term can be estimated as

(16) ≤ C
1

µ1/2

(
1

p
+ 1

)
.

Thus, we arrive at

|〈f, AT,µf〉| ≤ C
1

µ1/6
‖f‖22

∥∥∥∥ V

| · |2/3

∥∥∥∥1/2
1

∫ ∞
0

dp

∣∣∣∣ 1

KT/µ,1(p)
− 1

p2 + 1

∣∣∣∣ |p− 1|1/3(1 + p)2 ,

where the integral is uniformly bounded as long as T ≤ Cµ and we conclude

lim sup
µ→∞

sup
0<T≤Cµ

‖AT,µ‖op = 0 ,

since the bound above is uniform in `. Therefore, as long as T = O(µ), the spectrum of
the Birman-Schwinger operator approaches the spectrum of the operator in the second
term in (10) as µ→∞.

Combining our considerations, we get that, since by assumption e
(3)
µ < 0 for µ ≥ µ0,

Tc > 0 for all sufficiently large µ. This is because the second term in (10) can be made
arbitrarily negative by taking T → 0, whereas the first and the third term are bounded
uniformly in T ≤ Cµ. Thus we get with the aid of Lemma 1 that

−1 = lim
µ→∞

m(3)
µ (Tc)e

(3)
µ .

In order to obtain (5) by means of (9), it remains to show that Tc = o(µ). Since it is
already shown in Lemma 1 that Tc = O(µ), we assume that Tc = Θ(µ), i.e. there exist

0 < c < C such that cµ ≤ Tc ≤ Cµ. This means that m
(3)
µ (Tc) is of order

√
µ, which

leads to a contradiction since
√
µe

(3)
µ = o(1) by Lemma 2 below. So, (9) implies (5) as

desired.

Lemma 2. Let V ∈ L3/2(R3). Then

lim sup
µ→∞

√
µ sup
`∈N0

∫
R3

dx |V (x)| (j`(
√
µ|x|))2 = 0 .

Proof. We estimate

√
µ sup
`∈N0

∫
R3

dx |V (x)| (j`(
√
µ|x|))2 ≤ C

√
µ

∫
R3

dx |V (x)| 1(√
µ|x|

)5/3
+ 1

, (17)

where the inequality follows from property (ii) of the spherical Bessel functions given
in the proof of Theorem 1. By using Hölder, we can further bound

(17) ≤ C‖V − φ‖3/2
∥∥∥∥ 1

| · |5/3 + 1

∥∥∥∥
3

+ C
√
µ

∫
R3

dx |φ(x)| 1(√
µ|x|

)5/3
+ 1

for any φ ∈ C∞0 (R3). The second term vanishes as µ→∞ since φ ∈ C∞0 (R3), the first
term can be made arbitrarily small as C∞0 (R3) is dense in L3/2(R3). Thus, we have
proven the claim.
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Now, we turn to the proof of upper and lower bounds on the critical temperature
for more general interactions in d = 3.

Proof of Theorem 2.
Part (a): As a first step, note that KT,µ(p) + V (x) ≥ 0 is equivalent to KT/µ,1(p) +
1
µ
V (x/

√
µ) ≥ 0. Then we estimate

KT/µ,1(p) +
1

µ
V (x/

√
µ)

≥ 1

2

(
|p2 − 1|+ 2T

µ

)
− 1

µ
V−(x/

√
µ)

≥ 1

2

(
|p2 − 1|+ 2T

µ
− 2

µ
V−(x/

√
µ)
(
e−m|x| +m|x|

))
≥ 1

2

(
|p2 − 1|+ 2T

µ
− 2
√
µ
‖V | · |‖∞

(
e−m|x|

|x|
+m

))
for any m > 0. By definition of Tc, we have the bound

Tc ≤ −
µ

2
infspec

(
|p2 − 1| − 2

√
µ
‖V | · |‖∞

(
e−m|x|

|x|
+m

))
.

In [6], Gontier et al. obtained an optimized lower bound on infspec(·) by choosing the

parameter m = (const.)µ1/4e
−
√

π
2‖V |·|‖∞

µ1/4
. Thereby, employing their estimate, which

turns into an upper bound by the sign, we arrive at

Tc . µ exp

(
−
√

π

2‖V | · |‖∞
µ1/4

)
as given in (6).
Part (b): First, note that the critical temperature, T̃c, determined by the fact that
the smallest eigenvalue of

|o(1)|
ln(µ)

BT = λBT

equals −1, gives a lower bound on the true critical temperature Tc, as BT is mono-
tonically increasing in T . Here, o(1) denotes any continuous function that vanishes
as µ → ∞. So, we put ourselves artificially in a “high-density with weak-coupling”
situation with weak-coupling parameter λ = |o(1)|

ln(µ)
. We will see, that the choice of λ is

optimal for the proof of our lower bound.
We employ the same convenient decomposition of the Birman-Schwinger operator

in (10). As shown in the proof of Theorem 1, the Hilbert-Schmidt norm of the first
term vanishes with the aid of the Hardy-Littlewood-Sobolev inequality (Theorem 4.3
in [17]), indeed even without λ. For the third term, the additional factor of λ will be
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crucial for estimating its Hilbert-Schmidt norm. In fact, after performing the angular
integration, its kernel is given by

AT,µ(x, y) = C V 1/2(x)|V (y)|1/2

×
∫ ∞
0

(
1

KT,µ(p)
− 1

p2 + µ

)(
sin p|x− y|
p|x− y|

−
sin
√
µ|x− y|

√
µ|x− y|

)
p2 dp .

Using that | sin a/a− sin b/b| ≤ min(C |a−b||a+b| ,
1
a

+ 1
b
) for a, b > 0, we can bound

|AT,µ(x, y)| ≤ C|V (x)|1/2|V (y)|1/2
√

1 +
1

|x− y|2

×
∫ ∞
0

∣∣∣∣ 1

KT,µ(p)
− 1

p2 + µ

∣∣∣∣ ∣∣∣∣p−√µp+
√
µ

∣∣∣∣ε(1

p
+

1
√
µ

)1−ε

p2 dp (18)

for any ε ∈ (0, 1). The integral in (18) is bounded by (a constant times) µε/2

ε
uniformly

in T ≤ Cµ. By choosing ε = 2/ ln(µ), we get with the aid of the Hardy-Littlewood-
Sobolev inequality that

λ sup
0<T≤Cµ

‖AT,µ‖HS ≤ C
(
‖V ‖1 + ‖V ‖3/2

)
|o(1)| µ→∞−−−→ 0 .

In order to see
√
µe

(3)
µ = O(1) for general V , we write out the integral kernel of the

operator in the second term in (10), which is given by(
V 1/2F(d)

µ

†
F(d)
µ |V |1/2

)
(x, y) =

C
√
µ
V 1/2(x)

sin
√
µ|x− y|
|x− y|

|V (y)|1/2 ,

and apply the Hardy-Littlewood-Sobolev inequality to conclude that its Hilbert-Schmidt
norm is bounded by (a constant times) 1√

µ
. Thus, involving the additional factor of λ,

we get with the same arguments as in the proof of Theorem 1 and by the construction
from the beginning of the proof, that

Tc ≥ T̃c ∼ µ exp

(
ln(µ)

|o(1)|√µe(3)µ (V )

)
and conclude (7).

Remark 1. The integral in (18) always behaves as µε/2 and thus cannot be an error term
without the extra factor of λ. This makes the main difference to the proof of Theorem 1,
where the additional averaging over the osciallations on the sphere “decouples” x and
y and leads to a higher power of µ in the denominator. This will change drastically for
d = 2, where the measure is p dp instead of p2 dp.

As the last proof, we turn to the d = 2 case which is simplified due to the reduced
dimension as we will see in the proof.

12



Proof of Theorem 3. We employ the same decomposition from (10) as used in the proofs
of Theorem 1 and 2.

After performing the angular integration, the first term has integral kernel

2π V 1/2(x)|V |1/2(y)

∫ ∞
0

p

p2 + µ
J0(p|x− y|) dp ,

where J0 is the 0th order Bessel function of the first kind. Since |J0(x)| ≤ C 1
xβ

for any
β ∈ [0, 1/2], we can bound the integral by

1

|x− y|
2ε
1+ε

∫ ∞
0

p
1−ε
1+ε

p2 + µ
dp =

1

|x− y|
2ε
1+ε

1

µ
ε

1+ε

∫ ∞
0

p
1−ε
1+ε

p2 + 1
dp ≤ C

1

|x− y|
2ε
1+ε

1

µ
ε

1+ε

.

Thus, with the aid of the Hardy-Littlewood-Sobolev (HLS) inequality, we find∥∥∥∥V 1/2 1

p2 + µ
|V |1/2

∥∥∥∥
HS

≤ C
1

µ
ε

1+ε

‖V ‖1+ε → 0 as µ→∞ .

For the third term, after performing the angular integration, its integral kernel is
bounded as

|AT,µ(x, y)| ≤ C |V (x)|1/2|V (y)|1/2

×
∫ ∞
0

∣∣∣∣ 1

KT,µ(p)
− 1

p2 + µ

∣∣∣∣ |J0(p|x− y|)− J0(√µ|x− y|)| p dp .

By using that J0 is Lipschitz continuous and |J0(x)| ≤ C 1
xβ

for any β ∈ [0, 1/2], we can
further estimate

|AT,µ(x, y)| ≤ C
1

µ
ε

1+ε

|V (x)|1/2|V (y)|1/2

|x− y|
2ε
1+ε

×
∫ ∞
0

∣∣∣∣ 1

KT/µ,1(p)
− 1

p2 + 1

∣∣∣∣ |p− 1|
1−3ε
3(1+ε)

(
1
√
p

+ 1

) 1+3ε
3(1+ε)

p dp ,

where the integral is bounded uniformly in T ≤ Cµ. Using again the HLS inequality,
we conclude

lim sup
µ→∞

sup
0<T≤Cµ

‖AT,µ‖HS = 0 .

Therefore, by the same arguments as in the proof of Theorem 1 and using Lemma 1,
we get

−1 = lim
µ→∞

m(2)
µ (Tc)e

(2)
µ .

Since e
(2)
µ = o(1) as µ → ∞ by the Riemann-Lebesgue Lemma (see the Definition of

V(d)
µ in (2)), we have, similarly to the proof of Theorem 1, that Tc = o(µ) by involving

Lemma 1. So, (9) implies (8) as desired.
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