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1 Leinaas and Myrheim

The notion of fermions and bosons relies on the postulate of (anti)symmetry
of the wave-function of a system of N identical quantum particles. If we were
able to label in a coherent way these particles, then their identical nature
would imply that:

|ψ(p(x1 . . . xN))|2 = |ψ(x1 . . . xN)|2 ∀p ∈ SN . (1)

Now, one could argue that labeling the particles corresponds to a non-
observable operation, at least in quantum mechanics. Since it is impossible
to distinguish them in the first place, how would it be possible to assign
coherently some labels to each of them?

Starting from this question, one could look for a more a priori way to
introduce indistinguishable particles. This is possible also in a classical frame,
and indeed needed as we will see, and the scheme can later be extended to
the quantum formalism.

1.1 Classical Mechanics

In this section, the classical description of a many body system is analyzed
and indistinguishability is taken into account, basically redefining the con-
figuration space of the particles.

1.1.1 Gibbs’ Paradox

It was indeed clear to Gibbs, long before quantum mechanics came to change
our lives, that in some situations it is necessary to take into account the iden-
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tical nature of the particles. This gave rise to his discovery of the paradox
that is named after him. He indeed argued that when calculating the entropy
change in a process of mixing to identical gases (same volume, temperature
etc.), in the thermodynamic limit, one should take into account that config-
urations that differ only for a permutation of the particles do not contribute
to the entropy. If this is not considered, than the entropy of the mixed gas
is bigger than the sum of the entropies of the two gases alone.

Example: let A be a system of N particles in a volume V and with
some total energy E.

S(N, V,E) = kB log

(
w

w0

)
, (2)

where w is the volume available in the phase space, while w0 is an arbitrary
scale factor. Now, w is the product of the volume in configuration space
u = V N and in momentum space. The latter corresponds to the surface of a
3N -dimensional sphere of radius

√
2mE:

v = A3N(2mE)(3N−1)/2. (3)

The coefficients An are defined through a recurrency relation:

An =
2π

n− 2
An−2 A1 = 2 A2 = 2π. (4)

One can see, through the previous definition, that for even n it takes
exactly n/2−1 steps to get to A2, whether for odd n it takes (n−1)/2 steps to
get to A1. In the first case, then, the numerator of eq.4 after all the iterations
is exactly (2π)n/2, while in the second it approximates the same value for large
n. As this is the case we are interested in, the thermodynamic limit, we can
just take this value, independent on the even or odd number of particles.
Concerning the denominator, if we borrow the 2 from the numerator, is
basically (n/2− 1)!.

log(An) ≈ n

2
log(π) + (

n

2
− 1) log(2)− log

(
(
n

2
− 1)!

)
≈ n

2
log(π) + (

n

2
− 1) log(2)− (

n

2
− 1) log

(n
2
− 1
)

≈ n

2
(log(π) + 1− log

(n
2

)
).

(5)
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From this result we reach the conclusion that the entropy of the system
is:

S(N, V,E) = kB log
(
V NA3N(2mE)(3N−1)/2

)
= kB(N log(V ) + log(A3N) +

3N − 1

2
log(2mE))

≈ kB(N log(V ) +
3N

2
(log(π) + 1− log

(
3N

2

)
+ log(2mE))

= kB(N log(V ) +N log

(
πe

4mE

3N

)3/2

) = NkB log

(
CV (

E

N
)3/2
)
.

(6)

Hence, we see that the entropy difference among the system of double
size and the sum of the two systems is 2NkB log(2), which is wrong. On the
other hand, if we take into account the Gibss’ paradox, then we have a much
smaller phase space w

N !
. Using Stirling’s approximation, we then get:

S ′(N,E, V ) ≈ S(N,E, V )−N log(N) ≈ NkB log

(
C
V

N
(
E

N
)3/2
)
. (7)

Now the entropy difference in the thermodynamic limit is zero, as it
should.

From this little example we see that also in classical mechanics indis-
tinguishability of particles does play a fundamental role. Therefore it is
legitimate to ask whether it is possible to include somehow classically the
identical particle problem and quantize it later.

1.1.2 Configuration Space

In classical mechanics the dynamics of the system is described by equations
of motion, a couple of differential equations which can be derived through
Poisson’s brackets from the Hamiltonian H(~x, ~p). As discussed in the pre-
vious section, the phase space is the Cartesian product of the configuration
and momentum space. Assuming N particles to be identical means that we
cannot distinguish one from the other, and therefore all the elements of the
configuration space which are different just for a permutation of indexes can-
not be counted as distinct. Let XN is the N−times Cartesian product of
the one particle configuration space X with itself, then if we want to fulfill

3



the request of having identical particles our configuration space is reduced
to XN/SN , where again SN is the permutation group of N elements.

As SN is discrete and indeed finite (it has N ! different elements) XN/SN
is locally isomorphic to XN , with the isomorphism to fail at each singularity
point, i.e. two points in XN which are identical under some element of SN .
Thanks to this local isomorphic nature, one can usually neglect the problem
of identical particles in classical mechanics. For each trajectory due to time
evolution in XN/SN there are N ! trajectories in XN . If they do not cross,
then there is no problem at all, as there will be no singularities and one can
always map each of the trajectories in XN to the one of XN/SN . If they do
cross, one can still handle the problem asking that continuous derivative of
the curves.

Usually, we will deal with particles living in some real space Rd with
d = 1, 2, 3. We can always split the problem into two separate systems: the
centre of mass and the relative motion. The centre of mass coordinate is:

~X =
1

N

N∑
i

~xi. (8)

Therefore, by definition, it is a vector in Rd and it is invariant under the
action of SN . We can then write down the configuration space as the Carte-
sian product of Rd and of the space of relative motion, which has dimensions
d(N −1). The centre of mass space is, as already mentioned, invariant under
permutations, thus, if we define r(d,N) to be the space of relative coordinates
of N partilces which has the same property, we can say that the configuration
space of N identical particles is:

RdN/SN = Rd × r(d,N). (9)

Now we restrict to the case N = 2, in order to get some concrete result.
Then ~x1 and ~x2 are the coordinates of the two particles in the space. The
relative motion vector is defined as ~x = ~x1− ~x2 and we can see that p12~x = −~x,
with p12 ∈ S2. In order to define r(d, 2), then, we need to obtain, for each
dimensionality, the manifold for which sending ~x1 ↔ ~x2 in real space leaves
~x invariant.

The d = 1 case is quite peculiar, as particles living on a line cannot
exchange position without passing through one another. As the particles are
identical, it does not make any difference which one comes first, and therefore
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the space r(1, 2) can be identified by the relation x1 ≤ x2, i.e. by the half-line
bounded by the point x1 = x2.

Since now we have modified the configuration space, we should be careful
to the definition of parallel transport of vectors. This defines how a vec-
tor, as the momentum for instance, is transported along a curve such as a
trajectory of a system of particles. In r(1, 2) a trajectory that encounters
the boundary line x1 = x2 gets reflected and therefore parallel transport on
that curve apparently is not possible. Nevertheless, this is just a matter of
definition. If we define parallel transport of a vector in a way that allows
for the component of the vector normal to the boundary to be inverted each
time the trajectory bounces on the edge, then our situation perfectly fits the
definition. Therefore, we find out that if a closed curve is reflected by the
boundary line, we can get a vector different from the initial one.

For d = 2 we get that r(2, 2) is given by the plane in which we identify
~x with −~x. A possible way to do so is to cut the plane along a line l from
0→∞ and then to wrap it on itself up to the point in which every point is
in a one to one correspondence with its opposite. This is given by a cone,
centered at the origin, with half-angle θ = 30.

We can understand parallel transport mapping back the cone on the
plane. If we draw a curve from ~x to −~x and transport a vector ~v along
this curve, we will see that, as ~x and − ~x coincide on the cone, the curve is
indeed closed. The vector ~v, though, when transported on the curve on the
cone, will change direction, from ~v to −~v.
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On the other hand, if we draw a curve closed on the plane (i.e. from ~x
to ~x) and then map it to the cone, ~v will be transported to itself. Therefore
we found out that each vector transported over a closed loop in r(2, 2) is
transformed in (−1)m~v, where m is the number of times the curve encircles
the vertex of the cone.

It can be seen that this property is indeed more general, and one can
identify two different classes of curves in r(d, 2). The first one does not
change a tangent vector during parallel transport, and coincides with a curve
in the normal space R2d that maps a point ( ~x1, ~x2) with itself. On the other
hand, the second kind of curves transports ~v into −~v. These ones correspond
to curves in R2d that connect ( ~x1, ~x2) with ( ~x2, ~x1).

1.2 Quantum Mechanics

The introduction of indistinguishable particles in a classical framework is
convenient, as we can avoid to introduce a symmetry postulate. Hence, sev-
eral advantages come from that, the configuration space is locally isometric
to the non-identical case, at least if we are far enough from singularities.
Therefore, we avoid the unphysical situation in which two very far apart
particles are connected through the statistics, even if they cannot physically
interact.

On the other hand, it makes quantization a bit harder, as now the classical
configuration space is curved and has singularities. We need therefore to be
careful in describing the formalism for parallel transport of tangent vectors,
which affects the definition of the derivative on the space and therefore of
momentum.

As a matter of fact, the most interesting dimensionality is d = 2, where
weird statistics can arise. It is on the plane, in fact, that it is possible
to have interpolating statistics among bosons and fermions, the so-called
anyons. Therefore, we will stick to the two-dimensional case, from now on.

In order to correctly quantize the configuration space, we proceed as
follows. First, for each point in the configuration space ~x we define a one
dimensional Hilbert space hx. Then, we represent each state of the system
as a vector field ~Ψ on the configuration space that to each point ~x connects
a vector ~Ψ(~x).

Then, if we define a particular gauge, which corresponds to choosing a
basis on a Hilbert space, we can define the function ψ(~x) that represents the
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coordinate of ~Ψ on that particular basis in the point ~x.

~Ψ(~x) = ψ(~x)~χx. (10)

As, of course, the state ~Ψ must be independent on the choice of the basis,
the function ψ(~x) has to be gauge dependent. Lets suppose we introduce a
change of basis through a unitary transformation M : χ′x = Mxχx.

⇒ ~Ψ(~x) = ψ(~x)χx = ψ′(~x)χ′x

= ψ′(~x)Mxχx ⇒ ψ′(~x) = (Mx)
−1ψ(~x) = eıφ(~x)ψ(~x).

(11)

As mentioned above, we need to define a parallel transport of state vec-
tors from hx to hx′ . We call the operator which does this operation on a
continuous line from ~x to ~x′ P (~x′, ~x) : hx → hx′ . It is a linear and unitary
operator. Usually, the result must depend on the particular pat connecting
the points on the configuration space, but we assume that if ~dx is an in-
fenitesimal displacement then P (~x+ ~dx, ~x) is independent on the particular
curve chosen and it is thus uniquely defined. We also assume that, for in-
finitesimal displacements, it is always possible to chose a gauge in such a way
that the operator of parallel displacement has the following form.

P (~x+ d~x, ~x)χx = (1 + ıdxkbk(~x))χx+dx, (12)

where Einstein notation in indexes summation is understood.
Now, in order to define a gauge-invariant differentiation operator in this

gauge, we take the full derivative of the state vector, which is, by definition,
gauge-invariant.

Dk(~Ψ(~x)) = χxDk(ψ(~x)) + ψ(~x)Dk(χx)

Dk(χx) = lim
dxk→0

P (~x+ dxk, ~x)χx − χx
dxk

= lim
dxk→0

(1 + ıdxkbk(~x))χx+dx − χx
dxk

=
∂

∂xk
χx + ıbk(~x)χx

⇒ Dk(~Ψ(~x)) = χxDk(ψ(~x)) + ψ(~x)
∂

∂xk
χx + ψ(~x)ıbk(~x)χx.

(13)

In order for the derivative to be gauge-invariant, then, one needs the
differentiation operator for the functions ψ(~x) to be:

Dkψ(~x) =
∂

∂xk
ψ(~x)− ıbk(~x)ψ(~x). (14)

7



The functions bk(~x) must be real, so that the operator P (~x+d~x) is unitary.
We can also define a quantity measuring the commutativity of the different
components of D:

fkl = ı[Dk, Dl] = ı
[
(∂k−ıbk)(∂l−ıbl)−(∂l−ıbl)(∂k−ıbk)

]
=

∂bl
∂xk
− ∂bk
∂xl

. (15)

We cannot help noticing the similarity with the gauge-invariance intro-
duced in the magnetic vector potential formalism. Analogously, here fkl plays
the role of the force field, and bk of the vector potential. As in this case we are
not dealing with any force field, we require fkl = 0 except at the singularities.
Consequently, the state vector ~Ψ will be changed only by closed loops that
encircle the singularity. Similarly to the case of normal vectors described in
the previous section, the state vector here will change according to Pm

x if it
rounds m times the singularity. Here Px is a linear unitary operator acting
on hx. Since hx is one-dimensional, Px can only be a phase factor:

Px = eıξ(~x). (16)

And ξ is real. Being just a phase factor it commutes with the displacement
operator and then

Px′ = P (~x′, ~x)PxP (~x′, ~x)−1 = Px (17)

hence ξ is actually position independent.
We then conclude that if we have two identical particles, the state of the

system after encircling m times the singularity of the configuration space,
which means basically exchanging m times the two particles in the real space,
will be acquire a phase eımξ.

We can then already see that from the only request of having a configu-
ration space that takes into account the indistinguishability of the particles
we have the limits for bosons and fermions (ξ = 0 and ξ = π respectively)
without imposing any symmetry postulate.

Now we can define two different approaches depending on where do we
introduce the dynamical effect of the particular topology of the configuration
space. Either we introduce the field bk in the gauge-invariant differentiation
operator and therefore in the Hamiltonian, or we find a particular gauge in
which bk = 0, but in this latter case, we shall introduce a multivalued wave
function, including the factor ξ.
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1.2.1 Harmonic Oscillator

We want to study the problem of two identical particles, in two dimensions,
that interact through a harmonic potential and satisfy the previous statistics
for an arbitrary ξ. We shall call these kind of particles anyons.

As the harmonic potential depends only on the relative distance of the
two particles, we can separate the centre of mass from the relative motion.

~R =
~x1 + ~x2

2
; ~r = ~x1 − ~x2

~P = ~p1 + ~p2 ; ~p =
~p1 − ~p2

2
.

(18)

Therefore, introducing the total mass M = 2m and the reduced mass
µ = m

2
, we can see how the Hamiltonian splits into two independent terms:

H =
P 2

2M
+
p2

2µ
. (19)

In the plane, using polar coordinates, the Hamiltonian describing the free
relative motion, has the following form:

H = − ~2

2µ

[ ∂2
∂r2

+
1

r

∂

∂r
+

1

r2
∂2

∂φ2

]
. (20)

As we learned from the previous section, we can have the simple normal
Hamiltonian, but then we should take into account the multi-valued nature
of the wavefunction. In this first case, eq.20 holds, but the wavefunctions
must satisfy

ψ(r, φ+ 2nπ) = eınξψ(r, φ). (21)

Again we see that the parameter ξ gives the usual bosonic and fermionic
limit, but there is no reason to restrict to these two cases.

On the other hand, we can build a single valued wavefunction through
a unitary transformation, and from that very transformation define a new
Hamiltonian, which will now contain the effect of the statistics in a part of
the differentiation operator. Starting from the wavefunctions of eq.21, we
define

ψ′(r, φ) = e−ıξ
φ
2πψ(r, φ). (22)

It is easy to verify that this second function is indeed single-valued:
ψ′(r, φ+ 2π) = ψ′(r, φ). The Hamiltonian hence transforms as:
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H ′ = e−ıξ
φ
2πHeıξ

φ
2π , (23)

the radial derivatives and the transformation Uφ = eıξ
φ
2π commute, thus just

the angular derivative will be affected by the transformation. It means that
the field bk is indeed a bφ field.

∂2

∂φ2
Uφ =

∂

∂φ
(
∂

∂φ
Uφ) =

∂

∂φ
(
∂Uφ
∂φ

+Uφ
∂

∂φ
) =

∂2Uφ
∂φ2

+2
∂Uφ
∂φ

∂

∂φ
+Uφ

∂2

∂φ2
(24)

The free particle Hamiltonian for anyons therefore is:

H ′ = − ~2

2µ

[ ∂2
∂r2

+
1

r

∂

∂r
+

1

r2
( ∂
∂φ

+ ı
ξ

2π

)2]
. (25)

If we now ask the two particles to interact via a harmonic potential
V (r) = µω2r2 the Hamiltonian of the system becomes H = H ′ + V . As
V depends only on the modulus of the radius r and not on the angle, the
total Hamiltonian H commutes with the projection of the momentum on φ,
[H, pφ] = 0, and we can write the Eigenfunction as ψ(r, φ) = eılφR(r). Then,
the angular dependence of ψ is trivial and we can write the differential equa-
tion for R(r).[ d2

dr2
+

1

r

d

dr
− 1

r2
(
l +

ξ

2π

)2 − µ2ω2r2

~2
+

2µE

~2
]
R(r) = 0. (26)

Apart from the presence of ξ, this is the equation for the harmonic os-
cillator in 2d in polar coordinates. We therefore proceed as in that case in
order to find the Eigenvalues. First of all, we notice that r ≥ 0 and therefore
we can exchange r with the following dimensionless quantity without loss of
generality: x = µω

~ r
2.

∂2

∂r2
= 2

µω

~
∂

∂x
+ 4

µω

~
x
∂2

∂x2

1

r

∂

∂r
= 2

µω

~
∂

∂x

. (27)

Pluggin eqs.27 into the Hamiltonian, we get:

(H−E)R(x) =
[
4
µω

~
x
∂2

∂x2
+4

µω

~
∂

∂x
− µω

~

(
l + ξ

2π

)2
x

− µω
~
x+

µω

~
ε
]
R(x) = 0,

(28)
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where ε := 2E
~ω .

⇓

(H − E)R(x) =
[ ∂2
∂x2

+
1

x

∂

∂x
−
(
l + ξ

2π

)2
4x2

− 1

4
+

ε

4x

]
R(x) = 0. (29)

We now assume the following ansatz on the form of R(x):

R(x) = x
|l+ξ/2π|

2 e−x/2ρ(x), (30)

which gives

∂R(x)

∂x
= x

|l+ξ/2π|
2 e−x/2

[( |l + ξ/2π|
2x

− 1

2

)
ρ(x) + ρ′(x)

]
(31)

and

∂2R(x)

∂x2
= x

|l+ξ/2π|
2 e−x/2

[(
(
|l + ξ/2π|

2x
−1

2
)2−|l + ξ/2π|

2x2
)
ρ(x)+

( |l + ξ/2π|
x

−1
)
ρ′(x)+ρ′′(x)

]
.

(32)
Therefore, plugging eq.32 and eq.31 into eq.29, we get:

1

2

[ ε
2
− |l +

ξ

2π
| − 1

]
ρ(x)+

[
|l +

ξ

2π
| − x+ 1

]
ρ′(x) + xρ′′(x) = 0. (33)

This last equation is known in the literature and corresponds to the gen-
eralized Laguerre equation. In order for it to have well behaved solutions,
the following condition must be fulfilled.

1

2

[ ε
2
− |l +

ξ

2π
| − 1

]
= n ; n ∈ N n ≥ 0 (34)

Then we see that the value of ξ, i.e. the statistics of the system, influences
the eigenvalues shifting them:

En,l(ξ) = 2~ω(n+ |l +
ξ

2π
|+ 1

2
). (35)

2 Anyons and quantum groups

It is well known that starting from the commutation and anti-commutation
relations of Bosons and Fermions it is possible to realize the SU(2) algebra,
following Schwinger construction. This consists of constructing ladder spin
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operators starting from annihilation and creation operators. Thanks to the
commutation relations, then, the SU(2) algebra is easily seen to be fulfilled.

A similar approach can be followed in order to construct a SU(2)q quan-
tum group starting from anyonic oscillators and from their deformed commu-
tation relations, which depend on their statistics ν. Therefore, in the follow-
ing, we will define the anyonic creation and annihilation operators through a
Jordan-Wigner transformation of fermionic operators. Once defined in such a
way, the deformed commutation relations for anyonic oscillators follow quite
easily.

2.1 Anyonic oscillators in R2

In order to perform a Jordan-Wigner transformation in a two-dimensional
space, we need to define an angle function. In order to make the notation
clear, we will briefly introduce properties and derivation of the angle function
on R2, with x1 and x2 defining the two components of a vector ~x in R2.

The angle function on R2 can be formally defined through the Green
function af the Laplacian:

G(~x, ~y) = log(|~x− ~y|). (36)

∆G(~x, ~y) = 2πδ(~x− ~y). (37)

We can then introduce a vector field ~f(~x, ~y) = (f 1(~x, ~y), f 2(~x, ~y)), with
components related to the Green function through the following equation:

f i = −εij ∂

∂xj
G(~x, ~y), (38)

so that f 1 = −∂G(~x,~y)
∂x2

and f 2 = ∂G(~x,~y)
∂x1

, where we used the completely anti-
symmetric tensor εij. It is then possible to define the angle function Θ(~x, ~y)
as:

∂

∂xi
Θ(~x, ~y) = fi(~x, ~y). (39)

We can easily check that Θ satisfies the following relation:

εij
∂

∂xi

∂

∂xj
Θ(~x, ~y) = ∆G(~x, ~y) = 2πδ(~x− ~y). (40)
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Equation 40 has a solution which coincides with the usual definition of
the angle between ~x and ~y:

Θ(~x, ~y) = arctan

(
y2 − x2
y1 − x1

)
. (41)

As this function is multivalued, it is necessary to introduce a branch cut,
for instance the line (x1,−∞), so that the values of Θ are restricted in the
interval [−π, π). It is easy to verify, especially graphically as shown in fig.1,
that the following relation holds:

Θ(~x, ~y)−Θ(~y, ~x) =

{
πsign(y2 − x2), if x2 6= y2

πsign(x1 − y1), if x2 = y2
(42)

Figure 1: Angle function between ~x and ~y. As the values of Θ are restricted
in the interval [−π, π) the two angles have opposite sign.

2.1.1 Jordan-Wigner transformation: anyonic operators on R2

We can finally define anyonic creation and annihilation operators on the plane
through the Jordan-Wigner transformation, making use of the angle function
previously defined. We must remark that the choice of the angle function is
somewhat arbitrary, due to the various possible choices of the branch cut.
We will consider just spinless anyons, in order to make the notation easier,
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but we warn that the construction of the quantum group SU(2)q requires the
presence of two different spins. We refer the interested reader to the original
paper [2] for further details.

The way we will define anyonic operators is the following: starting from
fermionic operators, we will transform them in order to make them non-local
and to take into account the fact that different braidings lead to different
final states. We will do so by introducing an operator K(~x) which basically
counts the total number of particles and sticks to each of them a phase, given
by the angle function Θ(~x, ~y).

K(~x) = exp

(
ıν

∫
R2

Θ(~x, ~y)c†(~y)c(~y)dy

)
(43)

K†(~x) = exp

(
−ıν

∫
R2

Θ(~x, ~y)(c†(~y)c(~y))†dy

)
= (K(~x))−1 (44)

where ν is a real parameter.
Given these two operators, we can then define creation and annihilation

operators for anyons:

a(~x) = K(~x)c(~x) (45)

a†(~x) = c†(~x)K†(~x) (46)

with c and c† are spinless fermionic operators.
In order to prove deformed commutation relation of these operators, we

need before some useful equations:

K(~x)c(~y) = exp

(
ıν

∫
R2

Θ(~x, ~y′)c†(~y′)c(~y′)dy′
)
c(~y)

= (1 + ıν

∫
R2

Θ(~x, ~y′)c†(~y′)c(~y′)dy′ +O(ν2))c(~y)

= c(~y)− ıν
∫
R2

Θ(~x, ~y′)c†(~y′)c(~y)c(~y′)dy′

= c(~y)− ıν
∫
R2

Θ(~x, ~y′)(δ(~y − ~y′)− c(~y)c†(~y′))c(~y′)dy′

= c(~y)− c(~y)ıνΘ(~x, ~y) + c(~y)ıν

∫
R2

Θ(~x, ~y′)c†(~y′)c(~y′)dy′

= exp(−ıνΘ(~x, ~y))c(~y)K(~x),

(47)
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where we used the Taylor expansion of the exponential, assuming ν � 1.
This works also for the generic ν case, in which we can think of K(~x) as the
product of infinite operators with infinitesimal ν, each satisfying the previous
relation.

In a similar way, these relations follow:

K(~x)c†(~y) = exp(ıνΘ(~x, ~y))c†(~x)K(~x)

K(~x)K(~y) = K(~y)K(~x).
(48)

From these equations we can see that the following deformed commuta-
tion relation holds, using the relation eq.42 for Θ:

a(~x)a(~y) = K(~x)c(~x)K(~y)c(~y)

= exp(ıνΘ(~y, ~x))K(~x)K(~y)c(~x)c(~y)

= − exp(ıνΘ(~y, ~x))K(~y)K(~x)c(~y)c(~x)

= − exp(−ıν(Θ(~x, ~y)−Θ(~y, ~x)))K(~y)c(~y)K(~x)c(~x)

= − exp(−ıνπ)a(~y)a(~x)

(49)

Therefore we can write:

a(~x)a(~y) + q−1a(~y)a(~x) = 0,

with q = exp(ıνπ) defining the statistics of the particles. In particular, we
see that when ν = 0 and ν = 1 fermionic anticommutation relations and
bosonic commutation relations are restored, respectively.

By hermitian conjugation we get also (as q∗ = q−1):

a†(~x)a†(~y) + q−1a†(~y)a†(~x) = 0. (50)

With similar arguments to the ones used in eq.49, one can derive also

a(~x)a†(~y) + qa†(~y)a(~x) = 0. (51)

We want to stress here that these commutation relations reflect the statis-
tics of the braid group, as exchanging particles in ~x and ~y gives opposite
phases depending on if we do so clockwise or counterclockwise (i.e. if x > y
or y < x, given the cut that defines the angle function).
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Commutation relations among creation and annihilation operators at the
same point ~x deserve special attention, as here the angle function is not well
defined. Nevertheless, as we shall see in the next lines, when we evaluate
a(~x)a†(~x) the angle function cancel out, yielding a well defined result.

a(~x)a†(~x) = K(~x)c(~x)c†(~x)K†(~x)

= K(~x)(1− c†(~x)c(~x))K†(~x)

= 1− exp(ıνΘ(~x, ~x))c†(~x)K(~x)c(~x)K†(~x)

= 1− exp(ıνΘ(~x, ~x))c†(~x)K(~x) exp(−ıνΘ(~x, ~x))K†(~x)c(~x)

= 1− c†(~x)K†(~x)K(~x)c(~x) = 1− a†(~x)a(~x)

(52)

from which we observe that anyons with statistics parameter ν obey standard
anticommutation relations at the same point ~x, as normal fermions.

We therefore see that starting from the Jordan-Wigner transformation
defined in eq.45 one can obtain commutation relations deformed via a factor
q ∈ [−1, 1], that interpolates between bosons and fermions. As mentioned
above, it is possible to build a quantum group out of these anyonic oscillators,
in a way similar to the one used to get SU(2) from bosonic and fermionic
operators. We address the interest reader to reference [2] for further analysis.
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