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Abstract

The goal of this note is twofold: On the one hand, we give a modern proof of
the local semicircle law for Wigner random matrices. It states that the resolvent,
G, of an hermitian N×N random matrix H can be approximated by the solution
M of a deterministic equation (Matrix Dyson Equation, MDE) in high probability
sense, increasingly well, as the size N approaches infinity. The proof is based on
showing that (i) G solves the MDE up to an error that is small in high-moment
sense, and (ii) the MDE is stable against small additive perturbations.

On the other hand, we present a local law on perturbations of Wigner matrices
by a fixed number of mutually orthogonal rank−1 random matrices, which is a
basic example of an overall weak but long range correlation structure in H.
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1 Introduction

In 1958, E. P. Wigner [14] noticed that the gaps of energy levels of heavy nuclei tend
to follow the same universality pattern, independent of the specific material. As the
appropriate theory for describing forces in the nucleus was not known at the time, he
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followed a more phenomenological approach and modelled the unknown Hamiltonian
by a hermitian random matrix with independent entries (Wigner matrix), ignoring all
physical details, except the symmetry type, real symmetric or complex hermitian, cor-
responding to physical systems with and without time reversal symmetry, respectively.
Based on the observation that this modelling amazingly reproduced the experimental
results, he formulated the surmise that the fluctuation of the gaps between successive
eigenvalues of a random matrix follows a universal distribution, depending only on the
symmetry type of matrix, analogously to the central limit theorem for scalar random
variables and the universality of the Gaussian distribution. A more detailed version of
this universality conjecture was formulated by Dyson and Mehta [10] in the 1960s, and
is thereof called the Wigner-Dyson-Mehta (WDM) universality conjecture.

The proof of the WDM conjecture in full generality has been an open problem
for more that fifty years until it got quite recently managed via the so called three
step strategy developed by Erdös, Schlein, Yau, and Yin (see [7] for an overview) with
parallel development by Tao and Vu [12]. At the current stage, the second and third
step are very robust in the sense that they are largely independent of the details of the
model under consideration and can be formulated as a “black-box” tool requiring only
the input of the first step, that is a local law, which asserts that the spectral measure of
the random matrix converges to a deterministic measure up to the scale of individual
eigenvalues as the size of the matrix tends to infinity.

A local law has first been established for random matrices with independent and
identically distributed entries (up to the symmetry ensuring hermiticity), so called
Wigner matrices, where the semicircle distribution (2.4) emerges as the required deter-
ministic probability measure. The historically first proof [14] of this celebrated Wigner
semicircle law followed the moment method, although being quite elementary, not suit-
able for more general random matrix models, in which one relaxes (i) the identicalness
of the distribution of the matrix elements, or (ii) their independentness, or both. A
generalization of the first kind can be dealt with by using the Schur method, heavily
using the independentness of the matrix elements. A modern approach to proving lo-
cal laws, also for (slowly) correlated random matrices with not neccessarily identically
distributed entries [6], builds on the analysis of a certain deterministic equation, the
matrix Dyson equation (MDE), of which the resolvent of the random matrix can be
shown to be an approximate solution, which yields the local law whenever the MDE is
stable agains small additive perturbations. This is described in more detail below.

The first goal (Section 2) of this note is to follow the strategy described above
in order to prove the local semicircle law for Wigner matrix, which has – at least to
our knowledge – never been done. The second goal (Section 3) is to prove a local
law for perturbations of Wigner matrices by a fixed number of mutually orthogonal
rank−1 random matrices realizing a basic example for a weak but long range correlation
structure in the random matrix which is generalization of both, type (i) and type (ii)
above.
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1.1 Proof strategy for the semicircle law

For a general hermitian N ×N random matrix H = H(N) with ordered random eigen-
values λ1 ≤ ... ≤ λN we denote its resolvent by

G(z) = G(N)(z) = (H − z)−1 ,

where the spectral parameter z = E + iη is assumed to be in the upper half plane H.
Due to the quantum mechanical interpretation of H as a Hamilton operator of a system
with N particles, we refer to E = <z as energy.

The first two moments of H determine the limiting behavior of G(z) in the limit of
large N . More specifically, let

A := EH , H =: A+
1√
N
W , S[V ] :=

1

N
EWVW , (1.1)

where S is a linear map on the space of N ×N matrices which we call the self-energy
operator and W is a random matrix with zero expectation (see Definition 2.1). Then,
the unique deterministic solution M = M(z) to the matrix Dyson equation (MDE)

1 + (z − A+ S[M ])M = 0 under the constraint =M =
1

2i
(M −M∗) > 0 (1.2)

approximates the random matrix G(z) increasingly well as N tends to infinity, which
is the general scope of a local law for random matrices as the ones formulated in
Theorem 2.2 and Theorem 2.3 below.

The properties of (1.2) and its solutions have been studied in [1]. In particular, it
has been shown that

m(z) :=
1

N
TrM(z) =

∫
R

1

x− z
µ(dx) (1.3)

is the Stieltjes transform of a measure µ on R, which we call the self-consistent density
of states, and whose support suppµ we call the self-consistent spectrum. Moreover,
under quite general conditions [1], one can show that µ is absolutely continuous with
compactly supported Hölder continuous probability density

µ(dx) = ρ(x)dx and that ρ(z) =
1

πN
=TrM(z) (1.4)

is the harmonic extension of ρ : R → [0,∞). We note that the imaginary part of the
Stieltjes transform

=mµ(z) =

∫
R

η

|x− E|2 + η2
µ(dx), z = E + iη

of a measure µ can also be viewed as the convolution of µ with the Cauchy kernel Pη
on scale η, i.e.

=mµ(E + iη) = (Pη ? µ)(E), with Pη(E) =
η

E2 + η2
.
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Up to the normalization by 1/π (cf. (1.4)), Pη is an approximate delta function on scale
η and thus =mµ(E + iη) resolves the measure µ on a scale η around the energy E.

The above notions become clear by noticing that the empirical density of states

µN =
1

N

N∑
i=1

δλi (1.5)

of H has Stieltjes transform

mN(z) := mµN (z) =

∫
R

1

x− z
µN(dx) =

1

N

N∑
i=1

1

λi − z
=

1

N
TrG(z) . (1.6)

Thus, as the convergence of the Stieltjes transforms mN(z) → m(z) for any z ∈ H
implies the convergence of the measures µN → µ in distribution [8], the study of a
deterministic law for the spectrum of H for large N reduces to finding estimates on
N−1Tr(G − M). A result that controls this difference for any fixed z ∈ H is called
a global law, whereas a local law allows the spectral parameter z = E + iη ∈ H to
approach the real axis while the resolution η is slightly above the typical eigenvalue
spacing, which can be understood as follows (cf. [4]). In case that diam(specH) is
of order one (see (2.1)), µN is a discrete measure on small 1/N scales , and thus it
may behave very badly (i.e. strongly fluctuating or blow up) for η smaller than 1/N ,
depending on whether there happens to be an eigenvalue in an η-vincinity of E. Thus,
as the eigenvalue spacing in the bulk of specH is typically of order 1/N , for η . 1/N
we expect no “self-averaging behavior” of mN . But, as long as η � 1/N one might
hope for a self-averaging law of large numbers phenomenon. This hope is confirmed by
the local law (Theorem 2.3) down to the smallest possible (optimal) scale η � 1/N .
Although we have a precise distinction between a global and a local law, we will often
refer to the global law (as formulated in Theorem 2.2) as a local law as well.

Moreover, since (1.2) is stable against small additive perturbations, it is sufficient
to study the smallness of G −M by showing that the error matrix D = D(z) defined
by

D := 1 + (z − A+ S[G])G = (H − A+ S[G])G =
W√
N
G+ S[G]G (1.7)

is small (see Section 4 for more details). Within the framework of this general strategy,
choosing the correct norm to measure smallness of D is a key technical ingredient.
Similarly to G, the error matrix D is very large in the usual `p → `q matrix norms,
but its quadratic form 〈x, Dy〉 is under control with very high probability for any
fixed deterministic vectors x,y. Furthermore, to improve precision, we will distinguish
two different concepts of measuring the size of D. In the first probabilistic part of
the proof (Proposition 4.1) we will show that D can be bounded in isotropic sense as
|〈x, Dy〉| . ‖x‖‖y‖/

√
Nη for fixed deterministic vectors x,y as well as in averaged

sense as N−1|TrBD| . ‖B‖/Nη for fixed deterministic matrices B. Here, ‖x‖, ‖y‖,
‖B‖ denote the standard Euclidean vector norm ‖x‖2 =

∑
a |xa|2 and matrix operator
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norm ‖B‖ := sup‖x‖,‖y‖≤1 |〈x, By〉|. In the second deterministic part of the proof
(Proposition 4.2) we will show that since D is small, and (1.2) is stable under small
additive perturbations, also G−M is small in an appropriate sense. Finally, we combine
these parts in a bootstrapping procedure (Proposition 4.5) in order to arrive at the local
law.

1.2 Outline

In Section 2, the first part of this note, we formulate the local for the simplified class
of Wigner matrices (Definition 2.1) in Theorem 2.2 and Theorem 2.3, which we prove
in Section 4. Based on these theorems, we state a few classical corollaries on the
completeness of the self-consistent spectrum (Corollary 2.4), the delocalization of bulk-
eigenvectors (Corollary 2.5) and the rigidity of bulk-eigenvalues (Corollary 2.6).

In Section 3, the second part of this note, we will allow for perturbations of Wigner
matrices by a fixed number of mutually orthogonal rank−1 random matrices, consti-
tuting a basic example of an overall weak but long range correlation structure in H,
and present the corresponding local law which we formulate in Theorem 3.3 and Corol-
lary 3.4 as well as in Theorem 3.5 and Corollary 3.6. The proofs of these results, which
are given in Section 4, do not follow the general strategy sketched above, but use the
local law for Wigner matrices and a simple identity for the resolvent of a hermitian
rank−1 perturbation of a hermitian matrix (Proposition 3.2).

1.3 Notations

In order to formulate our results and proofs concisely, we introduce the following nota-
tion. An inequality with a subscript indicates that we allow for a constant in the bound
depending only on the quantities in the subscript, e.g. A(N, ε) ≤ε B(N, ε) means that
there exists a constant C = C(ε), independent of N , such that A(N, ε) ≤ C(ε)B(N, ε)
holds for all N and ε > 0. In many statements we will assume that N is sufficiently
large, depending on any other parameters of the model. We will use boldface letters
x,y, ... from the end of the alphabet to denote vectors in CN with entries x = (xi)i∈[N ]

where [N ] := { 1, ..., N } and the indices are chosen from the beginning or middle of the
alphabet. Elements of the set of ordered pairs [N ]2 = [N ] × [N ] will be called labels
and will be denoted by by Greek letters α = (i, j) ∈ [N ]2. Summations of the form

∑
i

and
∑

α are always understood to sum over all i ∈ [N ] and α ∈ [N ]2.
For indices i, j ∈ [N ] and vectors x,y ∈ CN we shall use the notations

Axy = 〈x, Ay〉 , Axi = 〈x, Aei〉 , Aix = 〈ei, Ax〉 ,

where ei is the i-th standard basis vector. The normalized trace is denoted by 〈A〉 :=
N−1TrA. Sometimes we will also use the notation 〈z〉 := 1+|z| for the complex number
z, but this should no lead to confusion as it will only be used for z. Moreover, we will
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use the maximum norm and the normalized Hilbert-Schmidt norm

‖A‖max := max
i,j∈[N ]

|Aij| , ‖A‖hs :=

(
1

N

∑
ij

|Aij|2
)1/2

for A ∈ CN×N .

2 Semicircle law for Wigner matrices

While the proof of a local law following the strategy sketched in the introduction has
been carried out for general self-adjoint random matrices with slow correlation decay
[6], we focus on giving a proof in this modern language in the prominent simplified
case of H being a Wigner matrix, which has – to our knowledge – never been written
up properly. Therefore, we assume that H is a centered random self-adjoint matrix
with i.i.d. matrix elements (up to the symmetry) of variance 1/

√
N , precisely defined

as follows.

Definition 2.1. Let H =
(
hi,j
)N
i,j=1

be a random matrix. We say that H = A+ 1√
N
W

with A := EH is a Wigner matrix, if A = 0 and for wij =
√
Nhij the following

conditions are satisfied (recall EW = 0 from (1.1)).

(i) The matrix elements are i.i.d. random variables up to the symmetry constraint
wij = w̄ji, ensuring that W is hermitian. More precicely, in the real symmet-
ric case, the collection of random variables {wij : i ≤ j } are independent and
identically distributed, while in the complex hermitian case the distributions of
{<wij,=wij : i < j} and {

√
2hii : i = 1, 2, ..., N} are independent and identical.

(ii) All moments of wij are finite, i.e. for every p ∈ N exists some Cp > 0 such that
E|wij|p ≤ Cp for all i, j ∈ 1, ..., N .

(iii) The common variance of the random variables wij equals 1, i.e. E|wij|2 = 1 for
all i, j ∈ 1, ..., N .

These conditions will ensure, that the spectrum of the Wigner matrix H = W√
N

is
real, centered around 0 and the typical size of an eigenvalue λi remains of order 1 even
as N tends to infinity. This can be seen by computing

E
∑
i

λ2i = ETrH2 =
1

N
E
∑
ij

|wij|2 = N , (2.1)

indicating that λi ∼ 1 on average (see [4]).
Assuming that H is a Wigner matrix, we can determine the solution of the MDE

(1.2) more explicitly as the self-energy operator reads

(Sch[V ])ij = 〈V 〉 δij or (Srs[V ])ij = 〈V 〉 δij + (1− δij)N−1Vji ,

in the complex hermitian and real symmetric case, respectively. The second summand
in the formula for the real symmetric case will turn out to be irrelevant for determining
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the self-consistent density of states (see Section 4), such that we focus on S[V ] = 〈V 〉
in the remainder of this paragraph. Indeed, M(z) = m(z)I solves the MDE, whenever
m(z) is a solution of the scalar equation

1 + (z +m)m = 0 under the constraint =m(z) > 0 ∀z ∈ H. (2.2)

This has a unique solution given by

msc(z) =
−z +

√
z2 − 4

2
, (2.3)

where the square root is chosen such that the branch cut is in the segment [−2, 2],
ensuring that the constraint is fullfilled. An easy computation, showing that this is the
Stieltjes transform of the semicircle density, i.e.

msc(z) =

∫
R

ρsc(x)

x− z
dx where ρsc(x) :=

1

2π

√
(4− x2)+ , (2.4)

explains, why we call the local law for Wigner matrices the local semicircle law. Note
that supp ρsc = [−2, 2] and we thus call ±2 the edges of the self-consistent spectrum.

2.1 Local semicircle law

In order to formulate the local semicircle law, we specify the range of spectral parameters
z by defining two spectral domains characterized via any given parameters γ, δ > 0.
Outside of the self-consistent spectrum we will work on

Dδ
out :=

{
z ∈ H : |z| ≤ NC0 , dist(z, [−2, 2]) ≥ N−δ

}
(2.5)

for some arbitrary fixed C0 ≥ 100, while we will use

Dδ
γ :=

{
z ∈ H : |z| ≤ NC0 ,=z ≥ N−1+γ, ρsc(<z) + dist(<z, [−2, 2]) ≥ N−δ

}
(2.6)

away from the edges ±2 of the self-consistent spectrum.

Theorem 2.2. (Local law outside of the spectrum and global law)
Let H be a Wigner matrix. Then, for any ε > 0 there exists δ > 0 such that for all
D > 0 we have the isotropic local law away from the spectrum,

P
(
|Gxy −msc〈x,y〉| ≤ ‖x‖ ‖y‖

N ε

〈z〉2
√
N

in Dδ
out

)
≥ 1− CN−D (2.7)

for all deterministic vectors x,y ∈ CN and we have the averaged local law away from
the spectrum

P
(
|〈BG〉 −msc〈B〉| ≤ ‖B‖

N ε

〈z〉2N
in Dδ

out

)
≥ 1− CN−D (2.8)

for all deterministic matrices B ∈ CN×N . In fact, δ can be chosen such that δ = cγ for
some absolute constant c > 0. Here, C = C(D, ε, γ) <∞ is a constant, depending only
on its arguments and the moment bounds Cp from Definition 2.1.
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We also obtain an optimal local law away from the spectral edges, especially in the
bulk.

Theorem 2.3. (Local law in the bulk of the spectrum)
Let H be a Wigner matrix. Then, for any γ, ε > 0 there exists δ > 0 such that for all
D > 0 we have the isotropic local law in the bulk,

P
(
|Gxy −msc〈x,y〉| ≤ ‖x‖ ‖y‖

N ε

√
N=z

in Dδ
γ

)
≥ 1− CN−D (2.9)

for all deterministic vectors x,y ∈ CN and we have the averaged law in the bulk

P
(
|〈BG〉 −msc〈B〉| ≤ ‖B‖

N ε

N=z
in Dδ

γ

)
≥ 1− CN−D (2.10)

for all deterministic matrices B ∈ CN×N . In fact, δ can be chosen such that δ =
cmin{ε, γ} for some absolute constant c > 0. Here, C = C(D, ε, γ) <∞ is a constant,
depending only on its arguments and the moment bounds Cp from Definition 2.1.

By setting B = 1 in (2.8) and (2.10) we get the desired comparison between the
Stieltjes transform of the empirical density of states (1.5) and the Stieltjes transform
of the semicircle density msc in the sense of a global and local law. Note that both
theorems cover the regime of z being far away from the spectrum. In that case, the
estimates from Theorem 2.2 are stronger, while Theorem 2.3 is really relevant when <z
is in the bulk of the spectrum [−2, 2] and =z is very small. Moreover, we stress the
importance of the vectors x,y ∈ CN and the matrix B ∈ CN×N being deterministic in
the above statements.

2.2 Delocalization of eigenvectors and eigenvalue rigidity

The above theorems immediately have the following classical corollaries on completeness
of the self-consistent spectrum, eigenvector delocalization and eigenvalue rigidity, as
stated below. While Corollary 2.4 is obtained along the proofs of Theorem 2.2 and
Theorem 2.3 in Section 4, the justification of Corollary 2.5 and Corollary 2.6 requires
some additional work. Although this work focusses on giving a modern proof of the
semicirle law, we provide a few arguments on the validity of these corollaries afterwards.

Corollary 2.4. (Completeness of the self-consistent spectrum)
Let H be a Wigner matrix. Then there exists δ > 0 such that for any D > 0,

P
(

specH 6⊂ (−N−δ, N−δ) + [−2, 2]

)
≤D N−D . (2.11)

Corollary 2.5. (Bulk delocalization)
Let H be a Wigner matrix and u = (ui)i∈[N ] be a normalized eigenvector corresponding
to a bulk eigenvalue λ of H. Then

P
(

max
i∈[N ]
|ui| ≥

N ε

√
N
, Hu = λu, ρsc(λ) ≥ δ

)
≤ε,δ,D N−D (2.12)

8



for any ε, δ,D > 0.

Corollary 2.6. (Bulk rigidity)
Let H be a Wigner matrix with ordered eigenvalues λ1 ≤ ... ≤ λN and denote the
classical position of the eigenvalue close to energy E ∈ R by

k(E) :=

⌈
N

∫ E

−∞
ρsc(x)dx

⌉
,

where d·e denotes the ceiling function. It then holds that

P
(

sup
{
|λk(E) − E| : E ∈ R, ρsc(E) ≥ δ

}
≥ N ε

N

)
≤ε,δ,D N−D (2.13)

for any ε, δ,D > 0

3 Matrices with weak but long range correlation

So far we studied the case of Wigner matrices, where we are in the special situation that
the matrix elements are independent and identically distributed up to the symmetry
constraint (see Definition 2.1). The proof given in Section 4 follows the strategy out-
lined in the introduction, which was primary designed in such a way that one can also
handle the case of random matrices with slow correlation decay [6]. Roughly speaking
this means that the correlation between different matrix elements decays with their
(natural) distance in a summable way. Here we are interested in the situation where
the correlation between the matrix elements does not decay with the distance (i.e. long
range correlation) but is weak in the sense that the correlation can be viewed as a
perturbation of an uncorrelated matrix. More precisely, we consider the following class
of examples.

Definition 3.1. (Perturbed Wigner matrices)
Let 1√

N
W be a Wigner matrix and (ξi)i=1,...,k be real random variables independent of

W that satisfy

P (|ξi| > N ε) ≤ε,D N−D and P
(
|ξi| ∈ (0, N−ε)

)
≤ε,D N−D (3.1)

for all i = 1, .., k and ε,D > 0. Moreover, let (vi)i=1,...,k be a deterministic orthonormal

system in CN and (ri)i=0,...,k ⊂ [0, 1] with r0 > 0 such that
∑k

i=0 ri = 1 (we assume
k ∈ N and r0 > 0 being independent of N). Then we call

H =
√
r0

1√
N
W +

k∑
i=1

√
Nri ξi |vi〉 〈vi| (3.2)

a (rank−k−)perturbed Wigner matrix and V := span(v1, ...,vk) the perturbed subspace
with orthogonal projection P =

∑k
i=1 |vi〉 〈vi| and P⊥ := 1− P . Note that H = 1√

N
W

for r0 = 1.
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This definition covers the special case of k = 1, v1 = e = N−1/2(1, ..., 1), for which

H = (hij)
N
i,j=1 with hij =

√
1− r N−1/2wij +

√
r N−1/2 ξ , where W = (wij)

N
i,j=1 ,

realizing the aimed correlation structure described above in the most elementary way.
For a perturbed Wigner matrix we expect a small modification of the semicircle law
for spectral parameters z with <z ∼

√
N due to the scale separation by

√
N in the

second summand in (3.2). More precisely, by Weyl’s inequality [13] on eigenvalues of
perturbed hermitian matrices, we expect k of the N eigenvalues to be “outliers” of the
bulk spectrum of the Wigner matrix and fluctuating on the given scale. In [9] Knowles
and Yin (see also, e.g., [3, 11]) showed that the (approximate) position of outliers in
the spectrum of Wigner matrices deformed by deterministic finite rank deformations is
given by

√
Nriξi + 1√

Nriξi
, which is consistent with our expectation. It is thus natural

to distinguish the bulk, ambient, outlier, and exterior domain, defined as

Dγ,δ,ν
bulk :=

{
z ∈ H : =z ≥ N−1+γ, ρ̃sc(<z) + dist(<z, [−2

√
r0, 2
√
r0]) ≥ N−δ, |z| ≤ N1/2−ν} ,

Dδ,ν
amb :=

{
z ∈ H : dist(z, [−2

√
r0, 2
√
r0]) ≥ N−δ, |z| ≤ N1/2−ν} ,

Dν
out :=

{
z ∈ H : N1/2−ν ≤ |z| ≤ N1/2+ν

}
Dν

ext :=
{
z ∈ H : N1/2+ν ≤ |z| ≤ NC0

}
,

respectively, for (small) γ, δ, ν > 0. Here C0 ≥ 100 is some arbitrary fixed constant and

ρ̃sc(x) = (2πr0)
−1
√

(4r0 − x2)+ denotes the semicircle density with radius 2
√
r0 and

m̃sc its Stieltjes transform. In order to deal with a perturbed Wigner matrix, we will
employ the following key formula on inverses of rank−1−perturbed matrices, which can
be verified by direct computation.

Proposition 3.2. (Perturbed resolvent) Let A ∈ CN×N with =A < 0 and v ∈ CN .
Then

1

A+ |v〉 〈v|
=

1

A
− 1

1 + 〈v, 1
A
v〉
· 1

A
|v〉 〈v| 1

A
.

Based on this identity and the local law from Theorem 2.2 and Theorem 2.3, we
obtain two local laws in isotropic and averaged sense covering the bulk, ambient and ex-
terior domain combined (Theorem 3.3), and the outlier domain (Theorem 3.5). In these
theorems we approximate the resolvent G by a “semi-deterministic” matrix M (ξ), which
still carries the ξi-randomness in the perturbed subspace but has the W -randomness
removed and is defined as

M (ξ) =
k∑
i=1

m̃sc

1 +
√
Nri ξi m̃sc

|vi〉 〈vi|+ m̃scP
⊥ . (3.3)

In the spectral domains Dγ,δ,ν
bulk , Dδ,ν

amb and Dν
ext, the quality of the bound on the error

compared with the results in Section 2 is not affected. In Dν
out the situation is different

due to the existence of outlier eigenvalues in this domain. The proofs of the statements
below are all given in Section 4.
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3.1 Local law away from the outliers

As in Section 2, the local laws estimate the difference between G and its approximation
in high probability sense. Note that this probability P used below is the probability for
the full randomness, i.e. both W and ξ.

Theorem 3.3. (Local law in the bulk, ambient and exterior domain)

(a) Let H be a perturbed Wigner matrix. Then, for any ε, γ > 0 there exists δ > 0
such that for all D, ν > 0 we have the isotropic law in the bulk domain

P
(
|〈x, (G−M (ξ))y〉| ≤ ‖x‖‖y‖ N ε

√
N=z

in Dγ,δ,ν
bulk

)
≥ 1− CN−D (3.4)

for all deterministic vectors x,y ∈ CN and we have the averaged law in the bulk
domain

P
(
|〈B(G−M (ξ))〉| ≤ ‖B‖ N

ε

N=z
in Dγ,δ,ν

bulk

)
≥ 1− CN−D (3.5)

for all deterministic matrices B ∈ CN×N . In fact, δ can be chosen as δ =
cmin(ε, γ) for some absolute constant c > 0 and C = C(D, ε, γ, ν) is some
constant depending only on its arguments and the bounds on the moments from
Definition 2.1 and Definition 3.1.

(b) Let H be a perturbed Wigner matrix. Then, for any ε > 0 there exists δ > 0 such
that for all D, ν > 0 we have the isotropic law in the ambient domain

P
(
|〈x, (G−M (ξ))y〉| ≤ ‖x‖‖y‖ N ε

√
N〈z〉2

in Dδ,ν
amb

)
≥ 1− CN−D (3.6)

for all deterministic vectors x,y ∈ CN and we have the averaged law in the
ambient domain

P
(
|〈B(G−M (ξ))〉| ≤ ‖B‖ N ε

N〈z〉2
in Dδ,ν

amb

)
≥ 1− CN−D (3.7)

for all deterministic matrices B ∈ CN×N . In fact, δ can be chosen as δ = cε
for some absolute constant c > 0 and C = C(D, ε, ν) is some constant depending
only on its arguments and the bounds on the moments from Definition 2.1 and
Definition 3.1.

(c) Let H be a perturbed Wigner matrix. Then, for any D, ε, ν > 0 we have the
isotropic law in the exterior domain

P
(
|〈x, (G−M (ξ))y〉| ≤ ‖x‖‖y‖ N ε

√
N〈z〉2

in Dν
ext

)
≥ 1− CN−D (3.8)

11



for all deterministic vectors x,y ∈ CN and we have the averaged law in the
exterior domain

P
(
|〈B(G−M (ξ))〉| ≤ ‖B‖ N ε

N〈z〉2
in Dν

ext

)
≥ 1− CN−D (3.9)

for all deterministic matrices B ∈ CN×N . In fact, δ can be chosen as δ = cε
for some absolute constant c > 0 and C = C(D, ε, ν) is some constant depending
only on its arguments and the bounds on the moments from Definition 2.1 and
Definition 3.1.

The following corollary compares the resolvent G to the full deterministic matrix
M = m̃sc that also has the ξ-randomness removed. Its proof will be a simple application
of Theorem 3.3 in combination with a suitable estimate on the difference M −M (ξ).

Corollary 3.4. (Full deterministic averaged law)
The averaged laws in (3.5), (3.7) and (3.9) from Theorem 3.3 remain valid in the same
form if we replace M (ξ) by M = m̃sc up to an additional factor of 〈z〉 in the error bound
of (3.7) and (3.9) whenever PBP 6= 0.

3.2 Local law in the outlier domain

In the outlier domain we restrict to a rank−1−perturbed Wigner matrix. The general
case could be handled similarly as in the proof of Theorem 3.3, but the error bound
would be considerably complicated (see Remark 4.6).

Theorem 3.5. (Local law in the outlier domain)
Let H be a random rank−1−perturbed Wigner matrix and define the semi-deterministic
control parameter

Θ(z) :=

∣∣∣∣∣
√
Nrξm̃sc(z)

1 +
√
Nrξm̃sc(z)

∣∣∣∣∣ . (3.10)

Moreover, let x,y ∈ CN be deterministic vectors and B ∈ CN×N a deterministic matrix
with ‖x‖, ‖y‖, ‖B‖ ≤ 1. Then, for any ε > 0 there exists ν > 0 such that for all D > 0
we have the isotropic law in the outlier domain

P
(
|〈x, (G−M (ξ))y〉| ≤ N ε

N3/2

(
1 +

Θ

N
+ (‖Px‖+ ‖Py‖) Θ

)
in Dν

out

)
≥ 1−CN−D

(3.11)
and the averaged law in the outlier domain

P
(
|〈B(G−M (ξ))〉| ≤ N ε

N2

(
1 +

Θ√
N

+ (‖PB‖+ ‖BP‖) Θ

)
in Dν

out

)
≥ 1−CN−D

(3.12)
for all deterministic matrices. In fact, ν can be chosen as ν = cε for some absolute
constant c > 0 and C = C(D, ε) is some constant depending only on its arguments and
the bounds on the moments from Definition 2.1 and Definition 3.1.

12



Note that while typically Θ(z) is of order 1, in the vicinity of z ∼
√
Nrξ it is of

order
√
N/η. Now, similarly to the other three domains above, the following corollary

compares the resolvent G to the full deterministic matrix M = m̃sc that also has
the ξ-randomness removed. Its proof will be a simple application of Theorem 3.5 in
combination with a suitable estimate on the difference M −M (ξ).

Corollary 3.6. (Deterministic averaged law)
If we replace M (ξ) with M = m̃sc in (3.12) the statement remains true but the bound
reads

P
(
|〈B(G−M)〉| ≤ N ε

N2

(
1 +

Θ√
N

+ (‖PB‖+ ‖BP‖) Θ + ‖PBP‖
√
NΘ

)
in Dν

out

)
≥ 1− CN−D . (3.13)

4 Proofs

4.1 Local semicircle law for Wigner matrices

As described in the introduction, we will prove the local semicircle law in three steps. In
the first step, we establish a high-moment bound on the error matrix D defined in (1.7).
In the second step, we show that the MDE (1.2) resp. its scalar variant for Wigner
matrices (2.2) is stable against small additive perturbations such as the error matrix
D. In the last step, we combine the previous results in a bootstrapping procedure in
order to conclude the smallness of G−M , i.e. the local law, on the optimal scale.

While we carry out the proof only for H being a real symmetric Wigner matrix, we
will see that the only neccessary modification concerns the cumulant expansion used in
Proposition 4.1, where we simply consider real and imaginary part separately to reduce
it to the real case.

4.1.1 High moment bounds on the error

In this section we sketch the proof of an isotropic and averaged bound on the error
matrix D defined in (1.7), in the form of high-moment estimates using a (multivari-
ate) cumulant expansion. To formalize the bounds, we define high-moment norms for
random variables X and random matrices A by

‖X‖p = (E|X|p)1/p , ‖A‖p = sup
‖x‖,‖y‖≤1

‖〈x, Ay〉‖p =

[
sup

‖x‖,‖y‖≤1
E|〈x, Ay〉|p

]1/p
,

where the supremum is taken over deterministic vectors x,y.

Proposition 4.1. (Bound on the error matrix, Theorem 4.1 in [6])
Let H be a Wigner matrix. Then there exists a constant C∗ such that for any p ≥ 1,

13



ε > 0, z ∈ H with =z ≥ N−1, B ∈ CN×N and x,y ∈ CN such that

‖〈x, Dy〉‖p
‖x‖‖y‖

≤ε,p N ε

√
‖=G‖q
N=z (1 + ‖G‖q)C∗

(
1 + ‖G‖q

N

)C∗p

(4.1a)

‖〈BD〉‖p
‖B‖

≤ε,p N ε〈z〉‖=G‖q
N=z (1 + ‖G‖q)C∗

(
1 + ‖G‖q

N

)C∗p

(4.1b)

where q = C∗p
4/ε, R = 2p.

The main tool for proving these bounds is an “integration by parts” formula (4.3)
for the expectation, called cumulant expansion. Moreover, by naively counting the
number of summations emerging by expanding the quantities on the left hand side of
(4.1), one would not obtain the bound given above. In fact, the main gain comes from
the key formula about resolvents of hermitian matrices

GG∗ =
=G
=z

or alternatively
∑
j

|Gij|2 =
=Gii

=z
, (4.2)

called the Ward identity, which directly follows from the spectral theorem and the first
resolvent identity. Note, that in the second formulation a sum of order N is reduced
to a 1/=z factor, so we effectively gain a factor of 1/(N=z) over naively counting the
number of summations.

Sketch of the proof: In the following, we will iteratively use the expansion

Ewijf(W ) =
R∑
k=1

∑
α∈{ij,ji}k

κ(ij,α)

k!
E∂αf(W ) + ΩR (4.3)

with an explicit error term ΩR (see Proposition 3.2 from [6]). Here for a k-tuple of labels
α = (α1, ..., αk) we use the short-hand notation κ(ij, (α1, ..., αk)) = κ(wij, wα1 , ..., wαk)
for the join cumulant of wij, wα1 , ..., wαk and set ∂α = ∂wα1 ...∂wαk , ∂ij = ∂wij . A
complex variant of (4.3) required for the complex hermitian case has a similar form.
For simplicity, we now assume that p = 2 and H has Gaussian entries, which makes all
terms in (4.3) with k ≥ 2 vanish. After performing the expansion in this setting, we
will argue how to deal with the general case.

We begin with the proof of the isotropic bound (4.1a) in this simplified case. By
application of (4.3) we have

E|Dxy|2 = E〈x, Dy〉〈y, D∗x〉

= N−1
∑
a,b,c
i,j,k

x̄aycȳixkκ(ab, ij)E
[
GbcG

∗
jk

]
+N−2

∑
a,b,c
i,j,k

x̄aycȳixk
∑
α,β

κ(ab, α)κ(ij, β)E
[(
G∆βG

)
ab

(G∗∆αG∗)ij

]
.
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Here, ∆α is the matrix with a one at lable α and zero everywhere else. The crucial
point in the above calculation lies in the effect of the term S[G]G in the definition of
D in (1.7) which acts as the self-energy renormalization of HG in such that a way that
it cancels a term of order 1 emerging from the cumulant expansion.

Now, we use the correlation structure κ(ab, cd) = δacδbd + δadδbc of a real symmetric
Wigner matrix to reduce the number of summations in both terms. With the aid of the
Ward-identity (4.2) and multiple applications of the Schwartz inequality we conclude
that

E|Dxy|2 ≤ C‖x‖2‖y‖2‖=G‖2
N=z

(1 + ‖G‖2)2 ,

where C > 0 is some constant depending only on the (easy) combinatorics.
Now, we turn the proof of (4.1b) in the simplified case. Siumilarly, by application

of (4.3), the Ward identity and the Schwartz inequality we obtain the bound

E |〈BD〉|2 ≤ ‖B‖2 ‖=G‖
2
2

(N=z)2
(1 + ‖G‖2)2 .

For the general case, we write

E |Dxy|2p = E
(
N−1/2WG+ S[G]G

)
xy
Dp−1
xy D̄

p
xy

and likewise for E |〈BD〉|2p, and use (4.3) in the first factor of W , considering everything
else as a function f . Like in the above calculations, S[G]G cancels the second order
cumulant and the effect of higher order cumulants will be small as the cumulant of
order k is N−

k+1
2 . However, the derivatives also act on the factors Dp−1 and D̄p and

many cumulants have to be tracked. In our case of Wigner matrices and using their
simple corellation structure, we could proceed, e.g., by induction. However, by doing
the proof carefully [6], one arrives at the bounds given in (4.1).

4.1.2 Stability of the MDE

In this section, we prove the stability of the MDE for the simple correlation structure
of Wigner matrices. Note, that the self-energy operator acts in the real symmetric case
as

S[G] = 〈G〉+
1

N
(G− diag(G11, ..., GNN))T =: 〈G〉+N−1G̃ . (4.4)

For fixed z ∈ H define the map

Jz[G,D] := 1 + (z + 〈G〉)G−D

on arbitrary matrices G and D. From the definition of D(z) in (1.7) and the solution
M(z) = m(z)I = msc(z)I of the MDE (2.2) it follows that Jz[M(z), 0] = 0 and
Jz[G(z), D(z) − N−1G̃(z)] = 0. Throughout the proof we will fix z and omit it from
the notation, i.e. J = Jz. We will consider G as a function G(D) for arbitrary error
matrix D satisfying J [G(D), D] = 0. Via the implicit function theorem, this relation
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defines a unique function G(D) for sufficiently small D and G(D) will be analytic as long
as J is stable. The stability will be formulated in a slightly modified maximum norm
accounting that the smallness of D can only be established in isotropic sense, i.e. in the
sense of high-moment bounds on its quadratic form Dxy for deterministic vectors x,y.
To define this special norm, we fix vectors x,y, define I := {x,y }∪{ ei | i ∈ [N ] } and
set

‖G‖∗ := ‖G‖x,y∗ := max
u,v∈I

|Guv|
‖u‖‖v‖

.

Proposition 4.2. (Stability of the MDE, Theorem 5.2 in [6])
Let x,y ∈ CN and denote the ball of radius δ > 0 around M in (CN×N , ‖ · ‖x,y∗ ) by
Bδ(M). Then for

ε1 :=

(
1 + ‖M‖2 + ‖M‖4 ‖ (1−m2

sc〈·〉)
−1 ‖hs→hs

)−2
10‖M‖2

, ε2 :=

√
ε1
10

there exists a unique function G : Bε1(0) → Bε2(M) with G(0) = M = mscI that
satisfies J [G(D), D] = 0. Moreover, the function G is analytic and satisfies

‖G(D1)−G(D2)‖∗ ≤ C
∥∥∥(1−m2

sc〈·〉
)−1∥∥∥

∗→∗
‖M‖‖D1 −D2‖∗ (4.5)

for any D1, D2 ∈ Bε1(0).

Proof. As a first step, we rewrite the equation J [G,D] = 0 in the form J̃ [V,D] = 0
where

J̃ [V,D] :=
(
1−m2

sc〈·〉
)
V −M〈V 〉V +MD, V := G−M

and for arbitrary V and D we claim the bounds

‖M〈V 〉V ‖∗ ≤ ‖M‖ ‖V ‖2∗ (4.6)

‖MD‖∗ ≤ ‖M‖ ‖D‖∗ (4.7)∥∥∥(1−m2
sc〈·〉

)−1∥∥∥
∗→∗
≤ 1 + ‖M‖2 + ‖M‖4

∥∥∥(1−m2
sc〈·〉

)−1∥∥∥
hs→hs

. (4.8)

For (4.6) and (4.7), note that M and 〈V 〉 are diagonal matrices and that ‖〈V 〉‖ ≤ ‖V ‖∗.
For (4.8) we use a three term geometric expansion to obtain∥∥∥(1−m2

sc〈·〉
)−1∥∥∥

∗→∗

≤ 1 +
∥∥m2

sc〈·〉
∥∥
∗→∗ +

∥∥m2
sc〈·〉

∥∥
∗→hs

∥∥∥(1−m2
sc〈·〉

)−1∥∥∥
hs→hs

∥∥m2
sc〈·〉

∥∥
hs→∗ (4.9)

≤ 1 + ‖M‖2 ‖〈·〉‖max→‖·‖ + ‖M‖4‖〈·〉‖max→‖·‖

∥∥∥(1−m2
sc〈·〉

)−1∥∥∥
hs→hs

‖〈·〉‖hs→‖·‖

and it remains to bound ‖〈·〉‖hs→‖·‖ and ‖〈·〉‖max→‖·‖. Therefore, we estimate

‖〈B〉‖ =|〈B〉| ≤ 1

N

∑
i

|Bii|
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≤ min

(N−1∑
i

|Bii|2
)1/2

, max
i∈[N ]
|Bii|

 ≤ min (‖B‖hs, ‖B‖max) ,

such that max
(
‖〈·〉‖hs→‖·‖, ‖〈·〉‖max→‖·‖

)
≤ 1 and thus (4.8) follows in combination with

(4.9). Now the statement (4.5) follows by a simple application of the implicit function
theorem as formulated in Lemma A.1 applied to the equation J̃ [G−M,D] written in
the form (

1−m2
sc〈·〉

)
V −M〈V 〉V = −MD

with A = 1−m2
sc〈·〉, B = M and d = D in the notation from Lemma A.1.

This general stability result will be used in the following form

‖G−M‖∗ ≤ε N ε〈z〉−1
(
‖D‖∗ +

1

Nη

)
in Dδ

out and Dδ
0 (4.10)

for some δ = δ(ε) > 0 as long as ‖G −M‖∗ ≤ε N−ε〈z〉2 by applying it to D1 = 0,
D2 = D(z)−N−1G̃ and using that ‖G‖∗ ≤ ‖G‖ = 1/η, 〈z〉‖M(z)‖ ≤ C as well as∥∥∥(1−m2

sc〈·〉
)−1∥∥∥

hs→hs
=

∥∥∥∥1 +
m2

sc

1−m2
sc

〈·〉
∥∥∥∥
hs→hs

≤ε N ε (4.11)

in Dδ
out and Dδ

0 for some δ = δ(ε) > 0, where the last bound follows since m(z) = ∓1
exactly at the spectral edges z = ±2. Moreover, it will also be used with 1/η replaced
by ‖G‖.

4.1.3 Conclusion: Bootstrapping and self-improving estimates

Before going into the proof of our main theorems, we introduce a commonly used (see,
e.g., [5]) notion of high-probability bound (Definition 4.3) and prepare the iteration
step of our bootstrapping procedure (Proposition 4.5).

Definition 4.3. (Stochastic domination) Let

X =
(
X(N)(u) | N ∈ N, u ∈ U (N)

)
and Y =

(
Y (N)(u) | N ∈ N, u ∈ U (N)

)
be families of non-negative random variables indexed by N , and possibly a parameter
u, then we say that X is stochastically dominated by Y , if for all ε,D > 0 we have

sup
u∈U(N)

P
(
X(N)(u) > N εY (N)(u)

)
≤ N−D

for large enough N ≥ N0(ε,D). In this case we write X ≺ Y . Moreover, if for some
complex family of random variables we have |X| ≺ Y , we also write X = O≺(Y ).
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It can easily be checked (see [5]), that ≺ satisfies the usual arithmetic properties,
i.e. if X1 ≺ Y1 and X2 ≺ Y2 then also X1+Y1 ≺ X2+Y2 and X1Y1 ≺ X2Y2. In particular,
by using the Chebychev inequality, the bound on the moments from Definition 2.1 can
be expressed as wij ≺ 1. Moreover, we will say that a sequence of events A = A(N)

holds with very high probability if for any D > 0 exists some N0(D) ∈ N such that for
all N ≥ N0(D) we have P(A(N)) ≥ 1−N−D.

In the following Lemma we establish that the control of the ‖ · ‖x,y∗ -norm for all x,y
in high-probability sense is essentially equivalent to the control of the ‖ · ‖p-norm for
all p ≥ 1. This translation will often be used in the proof below.

Lemma 4.4. Let R be a random matrix and Φ a deterministic control parameter. Then
the following implications hold:

(i) If Φ ≥ N−C, ‖R‖ ≤ NC and |Rxy| ≺ Φ for all normalized x,y and some C, then
also ‖R‖p ≤p,ε N εΦ for all ε > 0, p ≥ 1.

(ii) If ‖R‖p ≤p,ε N εΦ for all ε > 0, p ≥ 1, then ‖R‖x,y∗ ≺ Φ for any fixed x,y ∈ CN .

Proof. On the one hand, (i) is a direct consequence of

‖R‖p ≤ N εΦ + sup
‖x‖,‖y‖≤1

(
|Rxy|P (|Rxy| ≥ N εΦ)1/p

)
in combination with ‖R‖ ≤ NC and the definition of stochastic domination. On the
other hand, we obtain by application of Chebychev’s and Hölder’s inequality that

P (‖R‖∗ > NσΦ) ≤ E‖R‖p∗
NσpΦp

≤

(
E
∑
u,v∈I |Ruv|pr

)1/r
NσpΦp

≤ |I|2/r
‖R‖ppr
NσpΦp

≤p,r,ε
|I|2/r

N (σ−ε)p ,

and since |I| ≤ N + 2 we conclude that ‖R‖∗ ≺ Φ by choosing ε sufficiently small and
p, r sufficiently large.

As mentioned above, the proof of the local law in the bulk follows a bootstrapping
procedure. That is, we first prove the local law for η ≥ N , and afterwards we iteratively
show that if the local law holds for η ≥ Nγ0 then it also holds for η ≥ Nγ1 for some
γ1 < γ0. This iteration step is formulated as follows.

Proposition 4.5. (Bootstrapping, Proposition 5.5 in [6])
Let H be a Wigner matrix, δ, γ > 0 and γ0 > γ1 ≥ γ with 4(2C∗+1)(γ0−γ1) < γ < 1/2
and suppose that

‖G−M‖p ≤γ,p
N−γ/6

〈z〉
in Dδ

γ0
(4.12)

holds for all p ≥ 1, where C∗ is the constant from Proposition 4.1. Then the same
inequality (4.12) (with a possibly different implicit constant depending on γ, δ, p) holds
true in Dδ

γ1
.
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Proof. We abbreviate the step size from γ0 to γ1 by γs := γ0−γ1. By using ‖M‖ ≤ C/〈z〉
and (4.12) we infer ‖G‖p ≤p,γ Nγs〈z〉−1 in Dδ

γ0
. Fix E ∈ R and consider the function

η 7→ f(η) := η‖G(E + iη)‖p. Using that

η
∣∣〈x, G2y〉

∣∣ ≤ η

2

(
〈x, |G|2x〉+ 〈y, |G|2y〉

)
≤ 1

2
(〈x,=Gx〉 〈y,=Gy〉) ,

which follows by application of the Ward identity (4.2), we obtain that η 7→ f(η) is
monotonically increasing since

lim inf
ε→0

f(η + ε)− f(η)

ε
≥ ‖G(E + iη)‖p − η

∥∥∥∥lim
ε→0

G(E + i(η + ε))−G(E + iη)

ε

∥∥∥∥
p

= ‖G(E + iη)‖p − η‖G2(E + iη)‖p ≥ 0 . (4.13)

Therefore, 〈z〉‖G‖p ≤γ,p N2γs in Dδ
γ1

and we conclude from Proposition 4.1 and by using
γs < 1 that

‖D‖p ≤ε,p,γ N ε+2(C∗+1/2)γs−γ/2 ≤ N ε−γ/4 in Dδ
γ1
. (4.14)

By Lemma 4.4 we can translate this bound to ‖D‖x,y∗ ≺ N−γ/4 for any fixed x,y and
we drop the superscript from now on. Next, we apply (4.10) to obtain

‖G−M‖∗χ
(
‖G−M‖∗ ≤ N−γ/10

)
≺ N−γ/5

〈z〉
in Dδ

γ1
, (4.15)

where γ/10 is some examplary small exponent. This bound shows that there is a gap in
the set of possible values of ‖G−M‖∗, i.e. whenever ‖G−M‖∗ ≤ N−γ/10 we indeed have
the better bound ‖G −M‖∗ ≺ 〈z〉−1N−γ/5 in high-probability sense. The extension
of (4.12) to Dδ

γ1
now follows from a standard continuity argument using a fine grid of

intermediate values of η. More precisely, we use a fine N−3-grid and the η−1-Lipschitz
continuity of ‖G −M‖∗ to connect neighboring points on the grid. See [6] for a more
detailed argument.

We are now able to complete the proof of Theorem 2.2 and Theorem 2.3.

Proof of Theorems 2.2, 2.3 and Corollary 2.4. The proof involves five steps. First, we
prove an initial isotropic bound in Dδ

γ, which we improve in the second step to obtain
the isotropic local law as formulated in Theorem 2.3. In the third step, we use the
isotropic local law to obtain the averaged local law in the bulk, which is used in the
fourth step to obtain that with very high probability there are no eigenvalues outside
of the support ρsc. Finally, in the fifth step we use that there are no eigenvalues outside
the support of ρsc to obtain the improved isotropic and averaged local law outside the
support.

Step 1: Initial isotropic bound. We claim that

‖G−M‖p ≤p,γ
N−γ/6

〈z〉
in Dδ

γ (4.16)
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for some δ = δ(γ). After showing that (4.16) holds for η ≥ N , i.e. in Dδ
γ=2 = Dδ

2, we
conclude (4.16) in all of Dδ

γ by iteratively applying Proposition 4.5 starting from γ0 = 2.
Therefore, using wij ≺ 1 we estimate

‖H‖ = max
i∈[N ]
|λi| ≤

√
Tr |H|2 ≺

√
N ,

which, in combination with |z| ≥ N , implies ‖G‖p ≤p 〈z〉−1 and ‖=G‖p ≤p η 〈z〉−2 and
thus from Proposition 4.1 it follows that

‖D‖p ≤ε,p
N ε

〈z〉
√
N

in Dδ
2 .

We now fix normalized deterministic vectors x,y and translate these high-moment to
high-probability bounds using Lemma 4.4 to infer ‖D‖∗ ≺ 〈z〉−1 /

√
N and ‖G‖∗ ≺

〈z〉−1. Using the stability in the form (4.10) and absorbing N ε-factors into ≺ we con-
clude

‖G−M‖∗ ≺
1

〈z〉2
√
N

in Dδ
2 ,

from which follows (4.16) in Dδ
2 by application of Lemma 4.4 since x and y were

arbitrary. At the end of this step, we note that the bound ‖H‖ ≺
√
N obtained above

is very rough, but, as we see, sufficient for the initial isotropic bound. In fact, the proof
will show that ‖H‖ ≤ 2 + δ with very high probability.

Step 2: Iterative self-improvement of the isotropic bound. We now iteratively
improve the initial bound (4.16) until we reach the intermediate bound

‖G−M‖p ≤ε,p
N ε

〈z〉

(√
‖=M‖
Nη

+
1

〈z〉
1

Nη

)
in Dδ

γ (4.17)

for δ = δ(ε) > 0. From (4.16) and 〈z〉 ‖M‖ ≤ C we conclude that 〈z〉 ‖G‖p is N ε-
bounded in Dδ

γ for some δ = δ(ε) > 0. By application of Proposition 4.1 and (4.16) we
obtain that

‖D‖p ≤ε,p N ε

√
‖=G‖q
Nη

and ‖G−M‖∗ + ‖D‖∗ ≺ N−γ/6 in Dδ
γ. (4.18)

Since the following estimates hold true uniformly in the spectral domain Dδ
γ, we will

supress this qualifier.
In order to show (4.17) we define a sequence of successively improving control pa-

rameters (Ψl)
L
l=0 as Ψ0 = 1 and Ψl+1 = N−σΨl = N−(l+1)σ with arbitrary σ ∈ (0, 1).

The final parameter is implicitly determined as the largest integer L such that

ΨL ≥
Nσ

〈z〉

(√
‖=M‖
Nη

+
1

〈z〉
Nσ

Nη

)
. (4.19)
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For the proof of (4.17) it remains to show that

‖G−M‖p ≤ε,p N εΨl for all l = 0, , , ., L ,

which we prove by induction. For the induction step from l to l + 1, we write =G =
=M + =(G −M) and by using that

√
a+ b ≤

√
a +
√
b and

√
a/b ≤ ca + 1/(cb) for

all a, b, c > 0 we continue from the induction hypothesis and (4.18) such that we can
estimate

‖D‖p ≤ε,p N ε

(√
‖=M‖
Nη

+

√
Ψl

Nη

)
≤ε,p N ε

(√
‖=M‖
Nη

+
1

〈z〉
Nσ

Nη
+ 〈z〉N−σΨl

)
.

By application of Lemma 4.4 this translates to

‖D‖∗ ≺

√
‖=M‖
Nη

+
1

〈z〉
Nσ

Nη
+ 〈z〉N−σΨl

for all normalized x,y, from which we conclude by (4.10) that

|(G−M)xy| ≺
1

〈z〉

(√
‖=M‖
Nη

+
1

〈z〉
Nσ

Nη

)
+N−σΨl ≤ 2N−σΨl

where we used l < L and (4.19) in the last step. By the definition of Ψl+1 and with the
aid of Lemma 4.4 this yields

‖G−M‖p ≤ε,p N εΨl+1

completing the induction step and thereby the proof of (4.17). The isotropic local law
(2.9) in Theorem 2.3 now follows since =M is bounded and by translating (4.17) to a
high-probability bound using Lemma 4.4.

Step 3: Averaged bound. Since J̃ [G −M,D − N−1G̃] = 0 with D̃ := D − N−1G̃
we have that G−M satisfies the quadratic relation

G−M =
(
1−m2

sc〈·〉
)−1 [−MD̃ +M〈G−M〉(G−M)

]
and thus

‖〈B(G−M)〉‖p
≤
∥∥∥〈B (1−m2

sc〈·〉
)−1

[MD̃]〉
∥∥∥
p

+
∥∥∥〈B (1−m2

sc〈·〉
)−1

[M〈G−M〉(G−M)]〉
∥∥∥
p
.

By a three-term geometric expanion, as in (4.9), we obtain∥∥∥(1−m2
sc〈·〉

)−1∥∥∥
‖·‖→‖·‖

≤ 1 + ‖M‖2 + ‖M‖4
∥∥∥(1−m2

sc〈·〉
)−1∥∥∥

hs→hs
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and therefore
∥∥((1−m2

sc〈·〉)−1)
∗

[B∗]
∥∥ ≤ε N ε‖B‖ by (4.11). Since ‖N−1G̃‖ ≤ 1/Nη,

by application of (4.1b) in Proposition 4.1, where ((1−m2
sc〈·〉)−1)

∗
[B∗] plays the role

of B, writing ‖=G‖q ≤ ‖=M‖+ ‖G−M‖q and using (4.17) we can conclude that

‖〈B(G−M)〉‖p ≤p,ε,γ
N ε‖B‖
〈z〉

(
〈z〉‖=M‖

Nη
+

√
‖=M‖
Nη

1

Nη
+

1

(Nη)2

)
(4.20)

from Lemma A.2. The averaged local law (2.10) in Theorem 2.3 is now a direct conse-
quence of (4.20) and the fact that =M is bounded by translating it to a high-probability
bound with the aid of Lemma 4.4.

The proof of Theorem 2.3 is now complete. For the proof of Theorem 2.2, we first
work in the restricted domain Dδ

γ ∩Dδ
out and use that ‖=M‖ ≤ ηdist(z, [−2, 2])−2 which

follows from a direct computation and only adds another negligible N ε-factors in (4.17)
and (4.20) such that we have

‖G−M‖p ≤ε,p
N ε

〈z〉

(√
1

N
+

1

〈z〉
1

Nη

)
(4.21)

and

‖〈B(G−M)〉‖p ≤p,ε,γ
N ε‖B‖
〈z〉

(
〈z〉 1

N
+

√
1

N

1

Nη
+

1

(Nη)2

)
(4.22)

in the restricted domain Dδ
γ ∩Dδ

out. It requires to additional steps to prove Theorem 2.2
in all of Dδ

out.

Step 4: Completeness of the self-consistent spectrum. Suppose there is an
eigenvalue λ of H with dist(λ, [−2, 2]) ≥ N−δ. By application of (4.22) with B = 1 and
a spectral decomposition of H we obtain |〈G(λ + iη)〉| ≥ |〈=G(λ + iη)〉| ≥ 1/Nη and
thus

P
(
∃λ eigenv. with dist(λ, [−2, 2]) ≥ N−δ

)
≤ P

(
|〈G−M〉| ≥ c/Nη in Dδ

out ∩ Dδ
1/2

)
for some small constant c > 0, where we used that 〈M〉 is the Stieltjes transform of ρsc.
Using (4.22) again with ε = 1/4 and γ = 1/2, we infer by an application of Chebychevs
inequality that the right hand side can be further bounded by (a constant times)

inf
η≥N−1/2

(
N1/4

[
η +

1√
N

+
1

Nη

])p
≤p N−p/4 , (4.23)

from which Corollary 2.4 directly follows.

Step 5: Improved bounds outside of the support. Fix z such that dist(z, [−2, 2]) ≥
N−δ and η ≥ N−1+γ. Using that with very high probability there are no eigenvalues
outside of the support, we have ‖G‖ ≺ 〈z〉−1 and ‖=G‖ ≺ η〈z〉−2, which translate to
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‖G‖p ≤ε,p N ε〈z〉−1 and ‖=G‖p ≤ε,p N εη〈z〉−2 by Lemma 4.4, so we infer from Proposi-
tion 4.1 that

‖D‖p ≤ε,p
N ε

√
N〈z〉

and therefore ‖D‖∗ ≺
1√
N〈z〉

by application of Lemma 4.4. Using the stability from (4.10) (the required initial
smallness of G−M is guaranteed by (4.21)) with 1/η replaced by ‖G‖ ≺ 〈z〉−1 we find

‖G−M‖∗ ≺
1√
N〈z〉2

and therefore ‖G−M‖p ≤ε,p
N ε

√
N〈z〉2

by Lemma 4.4. Using Lipschitz-continuity of G and M with Lipschitz constant of order
1, we extend this bound from η ≥ N−1+γ to η ≥ 0, such that the isotropic law (2.7)
in Theorem 2.2 follows. Similarly to Step 3, this leads to the improved averaged local
(2.8), where we use that with very high probability there are no eigenvalues outside of
the support [−2, 2].

4.2 Delocalization and rigidity for Wigner matrices

In this section, we sketch the proofs of delocalization of bulk eigenvectors (Corollary 2.5)
and rigidity of bulk eigenvalues (Corollary 2.6) as corollaries of the local law in Theo-
rem 2.3.

Sketch of the proof of Corollary 2.5. Let u(k) = (u
(k)
i )i∈[N ] be a normalized eigenvector

of H with eigenvalue λk and i ∈ [N ]. Then we find from a spectral decomposition that

1 � =Gii = η
∑
k

|u(k)
i |2

(E − λk)2 + η2
≥ |u

(k)
i |2

η
for z = E + iη ,

where the first estimate follows from Theorem 2.3 and the boundedness of M . The last
inequality is true if we assume E being η-close to λk. So the claim follows by going
down to scale η = N−1+γ.

Sketch of the proof of Corollary 2.6. The main idea is to translate the bound on 〈G−
M〉 from the local law in Theorem 2.3 to a bound on the difference of the probability
measures

µ(dx) = ρsc(x)dx and µN(dx) =
1

N

N∑
i=1

δλi(dx) ,

with λi, i = 1, ..., N being the eigenvalues of H and for which 〈M〉 and 〈G〉 are the
respective Stieltjes transforms. This translation is achieved with the aid of Lemma 5.1
in [2], from which the claim follows by application of the improved local law away from
the self-consistent spectrum. See the proof of Corollary 2.9 in [1] for a more detailed
argument.

23



4.3 Matrices with weak but long range correlation

This section is devoted to the proof of the results from Section 3. For the proof of
Theorem 3.3 and Corollary 3.4, which deal with the bulk, ambient, and exterior domain,
we restrict to the case k = 2, assume r1, r2 > 0 to avoid redundancy, and, in order to
simplify notation, we redefine ξi :=

√
riξi for i = 1, 2 and set r0 = 1 (see Definition 3.1).

The general case then easily follows by iterating the argument. Before going into the
proof, we note that, using the notion of stochastic domination from Definition 4.3, the
conditions on ξi from (3.1) in Definition 3.1 can be rewritten as

|ξi| ≺ 1 and |(ξi|{ ξi 6=0 })
−1| ≺ 1 , (4.24)

leading to an arbitrarily “narrow” outlier domain, i.e. the position <z of an outlier
satisfies N1/2−ν . |<z| . N1/2+ν for all ν > 0, which corresponds to the arbitrariness
of ν > 0 in the ambient and exterior domain.

Proof of Theorem 3.3 and Corollary 3.4.
As mentioned in Section 3, the key formula to attack the perturbed Wigner matrix is
given in Proposition 3.2, which yields an expression for the resolvent of a hermitian ma-
trix that is perturbed by a hermitian rank−1 matrix. In order to apply Proposition 3.2
we define the following four hermitian random matrices

H(0) :=
1√
N
W , H(1) :=

1√
N
W + ξ1 |v1〉 〈v1| ,

H(2) :=
1√
N
W + ξ2 |v2〉 〈v2| , H(1,2) :=

1√
N
W +

2∑
i=1

ξi |vi〉 〈vi| ,

with resolvents G(#) = G(#)(z) = (H(#)−z)−1 and we write H = H(1,2) and G = G(1,2).
After these preparations, we split the proof in three parts, the first one concerning the
isotropic laws in Theorem 3.3, the second one the averaged laws in Theorem 3.3, partly
following from the isotropic laws, and the third one the averaged laws in Corollary 3.4.

Part 1: Isotropic law. The general idea in the proof of the isotropic law is to use
Proposition 3.2 twice in order to incorporate both orthogonal perturbations ξ1 |v1〉 〈v1|
and ξ2 |v2〉 〈v2| with the aid of the isotropic local law from Theorem 2.2 and Theorem 2.3
by using the two possible paths

G(0) −→ G(1) −→ G and G(0) −→ G(2) −→ G . (4.25)

More precisely, by going the first step in both paths, we obtain

G(i) = G(0) −
√
Nξi

1 +
√
NξiG

(0)
vivi

·G(0) |vi〉 〈vi|G(0) for i = 1, 2 (4.26)

from Proposition 3.2, for which we use the isotropic local for G(0) to obtain a local law
for G(i), i = 1, 2. These, in turn, can then be used to obtain the desired local law for G
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via two different paths. In this procedure, we will see that not every path is useful for
every choice of deterministic vectors x,y in the isotropic local law.

An important role will be played by the semi-deterministic control parameter

Θi(z) :=

∣∣∣∣∣
√
Nξim̃sc(z)

1 +
√
Nξim̃sc(z)

∣∣∣∣∣ , (4.27)

similarly introduced in (3.10) for the formulation of Theorem 3.5. Since m̃sc(z) is of
order 1 for 〈z〉 ≤ C and m̃sc(z) ∼ −1/z as z →∞, we infer from (4.24) that Θi(z) ≺ 1
for spectral parameters z in the domains Dγ,δ,ν

bulk , Dδ,ν
amb, and Dν

ext for any ν > 0.
In the following, we will further use the notion of stochastic domination, introduced

in Definition 4.3. Therefore, we will allow the parameter δ > 0 in the characterization
of Dγ,δ,ν

bulk and Dδ,ν
amb, to be dependent on the implicitly present power ε > 0 of N ε in the

definition of stochastic domination (and the parameter γ > 0), e.g. we write

G(0)
xy = msc 〈x,y〉+O≺

(
1√
Nη

)
in Dδ(ε,γ)

γ

for the isotropic local law in (2.9) from Theorem 2.3 with deterministic vectors x,y
satisfying ‖x‖, ‖y‖ ≤ 1 (note that the local laws in Section 2 are homogeneous in ‖x‖
and ‖y‖ resp. ‖B‖).

We now follow the two paths given in (4.25) and find for deterministic vectors
x,y ⊥ vi, i ∈ { 1, 2 }, with the aid of (4.26), the isotropic local laws (2.7) and (2.9) in
Theorem 2.2 and Theorem 2.3, respectively, and Θi ≺ 1 that

G(i)
xy = m̃sc 〈x,y〉+O≺

(
1√
Nη

)
G(i)
xy = m̃sc 〈x,y〉+O≺

(
1√
N〈z〉2

)
G(i)
vivi

=
m̃sc

1 +
√
Nξim̃sc

+O≺

(
1√
Nη

)
G(i)
vivi

=
m̃sc

1 +
√
Nξim̃sc

+O≺

(
1√
N〈z〉2

)
G(i)
xvi

= O≺

(
1√
Nη

)
G(i)
xvi

= O≺

(
1√
N〈z〉2

)
in Dγ,δ(ε,γ),ν

bulk (left column) and Dδ(ε),ν
amb (right column). The key point in this istropic

law for G(i) is that the high-probability error estimates are of the same form as in the
isotropic law for the resolvent G(0). This enables us to obtain the isotropic law for the
full resolvent G = G(1,2) with high-probability error bounds of the same form from the
isotropic law for G(i). As mentioned above, not all paths are suitable vor every choice
of deterministic vectors x,y, e.g. for Gv2v2 we have to choose the first option in (4.25).

Note that these observations serve as an starting point for an iterative application
of Proposition 3.2 yielding isotropic local laws with high-probability error bounds of
the same form in every iteration step. In this way we can deal with the general case
of a rank−k−perturbed Wigner matrix. As the spectral domain Dν

ext can be handled
completely analogously, we conclude the isotropic laws (3.4), (3.6), and (3.8) in Theo-
rem 3.3 by the definition of stochastic domination.
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Step 2: Averaged law. Fix a deterministic matrix B ∈ CN×N with ‖B‖ ≤ 1 and
decompose

B = P⊥BP⊥ + PBP⊥ + P⊥BP + PBP , (4.28)

where P is the orthogonal projection on the perturbed subspace (see Definition 3.1).
While we employ the same strategy as in the proof of the isotropic law for the first
term, we deal with the other three terms using the isotropic law itself. Indeed, using
(4.26), the local laws (2.8) and (2.10) from Theorem 2.2 and Theorem 2.3, respectively,
and Θi ≺ 1, we find

〈P⊥BP⊥G(i)〉 = m̃sc〈P⊥BP⊥〉+O≺

(
1

Nη

)
in Dγ,δ(ε,γ),ν

bulk ,

〈P⊥BP⊥G(i)〉 = m̃sc〈P⊥BP⊥〉+O≺

(
1

N〈z〉2

)
in Dδ(ε),ν

amb .

This can again be iterated such that we conclude the same bounds with G instead of
G(i). For the other three terms in (4.28) we use the isotropic law obtained above, the
fact that the number k of rank−1−perturbations is fixed (and independent of N), and
for the second and third term an additional Schwarz estimate to conclude the desired
averaged laws (3.5) and (3.7) from Theorem 3.3 in the spectral domains Dγ,δ,ν

bulk and Dδ,ν
amb

by the definition of stochastic domination. The averaged law (3.9) in Dν
ext can be proven

analogously.

Step 3. Corollary 3.4. Using the notation from the second step, it remains to show
that

|〈B(M −M (ξ))〉| ≺ 1

Nη
in Dγ,δ(γ,ε),ν

bulk ,

|〈B(M −M (ξ))〉| ≺ 1

N〈z〉2
(1 + 〈z〉‖PBP‖) in Dδ(ε),ν

amb ,

|〈B(M −M (ξ))〉| ≺ 1

N〈z〉2
(1 + 〈z〉‖PBP‖) in Dν

ext ,

which are all very easy to conclude from the definition of M and M (ξ).

Now, we turn to the proof the corresponding results for the outlier domain.

Proof of Theorem 3.5 and Corollary 3.6. In the outlier domain, we cannot use the esti-
mate Θ ≺ 1 from the proof of Theorem 3.3 above. By following the same strategy as in
the proof above, using that 〈z〉 ≈ N1/2 up to a factor of N±ν , and by carefully tracking
the appearances of Θ, we obtain the isotropic and averaged law in Theorem 3.5, as well
as the statement of Corollary 3.6.

Remark 4.6. It is possible to deal with a general rank−k−perturbed Wigner matrix
also in the outlier domain Dν

out via the strategy used in the proof of Theorem 3.3.
However, the error bounds are quite complicated and involve certain polynomials in Θi

emerging from the iterative employment of Proposition 3.2.
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A Auxiliary results

Lemma A.1. (Quadratic implicit function theorem, Lemma D.1 in [6])
Let ‖ · ‖ be norm on Cd, A,B : Cd → Cd linear maps and Q : Cd×Cd → Cd a bounded
Cd-valued quadratic form, i.e.,

‖Q‖ = sup
x,y∈Cd

‖Q(x, y)‖
‖x‖ ‖y‖

<∞ .

Suppose that A is invertible. Then for ε2 := (2‖A−1‖ ‖Q‖)−1 and ε1 := ε2 (2‖A−1‖ ‖B‖)−1

there is a unique function X : Bε1 → Bε2 such that

AX(d) +Q(X(d), X(d)) = Bd

where Bε denotes the open ε-ball around 0. Moreover, the funciton X is analytic and
satisfies

‖X(d1)−X(d2)‖ ≤ 2‖A−1‖ ‖B‖ ‖d1 − d2‖ for all d1, d2 ∈ Bε1/2 .

Lemma A.2. For random matrices R, T and p ≥ 1 it holds that ‖〈R〉T‖p ≤ ‖R‖2p‖T‖2p.

Proof. This is a direct consequence of Hölder’s inequality and the simple observation
that ‖〈R〉‖2p ≤ ‖R‖2p.
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