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Abstract

The study of discrete random matrices has attracted a large amount of interest
in recent years and gradually formed an area named combinatorial random matrices.
Contrary to the classical study of random matrices, the approach in this area are mostly
combinatorial. This report is the outcome of a rotation project supervised by Prof.
László Erdös. It focuses on one particular problem: the probability that a random sign
matrix is singular. We will first explain the paper of Rudelson and Vershynin [RV08]
in detail, which lays the ground for how to attack this question. Then, we will sketch
the breakthrough work by Tikhomirov [Tik20], which resolved this longstanding open
problem.
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1 Introduction

Let A be an n × n matrix, whose entries Aij are identically distributed and inde-
pendent (iid.) random variables, which take value 1 with probability 1/2 and −1 with
probability 1/2. What is the probability that A is singular?

Let pn denote this probability. Notice that pn ≥ 2−n, since with probability 2−n+1,
the first column and the second column are the same (up to a sign), which implies that
A is singular. Tikhomirov shows that this is essentially tight:

Theorem 1.1 ([Tik20]). pn = (1/2 + o(1))n as n → ∞.

Despite the simplicity of the statement, this problem is highly non-trivial. This
was an important open problem and has a long history: Komlòs [Kom67] first proved
that pn = o(1). Much later, Kahn, Komlós and Szemerédi [KKS95] showed that
pn ≤ 0.999n. The base is subsequently improved to 0.939, (3/4 + o(1)) by Tao and Vu
[TV08, TV09] and to (1/

√
2 + o(1)) by Bourgain, Vu, and Wood [BVW10].

More precisely, what Tikhomirov proved was:

Theorem 1.2. For every ε > 0, the least singular value of A satisfies:

P(sn(A) ≤ εn−1/2) ≤ (
1

2
+ ε)n + C1.2ε ,

where C1.2 is a constant depending only on ε.

Tikhomirov’s work builds upon the strategy the work of Rudelson and Vershynin
[RV08], who proved a much more general but less precise result. They showed that
if every entry is iid subgaussian random variable with bounded subgaussian moment,
then the singularity probability is exponentially small, with some base c ∈ (0, 1). See
Theorem 3.1 for a precise statement.

This report aims to demonstrate the proof ideas in [RV08, Tik20]. Due to the
length constraint, not all details are included. In particular, we will not prove the
main technical results from both papers, but only give some explanations of them.
Nonetheless, assuming these technical results, the report gives a complete description
of the structure of the proof.

The report is structured as follows: In Section 2, we list out definitions and standard
facts and fix our notations. In Section 3, we explain the proof for the subgaussian case,
based on the paper of Rudelson and Vershynin [RV08]. At last, in Section 4, we explain
Tikhomirov’s proof [Tik20], focusing on the new ideas involved.

2 Preliminaries

Singular Values Let A be an n × n matrix with real or complex entries. The
singular values of A are defined to be the eigenvalues of

√
A∗A, arranged in non-

increasing order (i.e. s1(A) ≥ s2(A) ≥ · · · ≥ sn(A)). A matrix is singular, if and only
if its least singular value equals to 0. The variation characterization of singular values
states that:

si(A) = inf
U subspace

dim(U)=n−i+1

sup
x∈U

∥x∥2=1

∥Ax∥2 = sup
U subspace
dim(U)=i

inf
x∈U

∥x∥2=1

∥Ax∥2.

In particular, we are interested in the smallest and largest singular values, which can
be expressed as

∥A∥ = s1(A) = sup
x∈Sn−1

∥Ax∥2, sn(A) = inf
x∈Sn−1

∥Ax∥2.

2



Subgaussian A real random variable ξ is called subgaussian, if for some constant
B > 0,

P(|ξ| > t) ≤ 2 exp(−t2/B2) ∀t > 0 .

The minimal B is called the subgaussian moment of ξ. This tail condition can be
translated to a moment condition, up to constants: ξ is subgaussian if there exists an
absolute constant C and some constant B > 0, such that

E|ξ|p ≤ C(B
√
p)p ∀p ≥ 1 .

Subgaussian random variables generalize the gaussian-like behavior to a larger class
of random variables. In particular, any bounded random variable is subgaussian with
some B.

Notations For convenience, we assume in this section and Section 3 that A is an
n × n real matrix, where Aij are iid. subgaussian random variables with variance at
least 1 and subgaussian moment at most B. In Section 4, we assume A is an n × n
matrix, where Aij = 1 with probability 1/2 and −1 with probability 1/2. Most of the
lemmas and theorems stated below hold in more general settings, either weakening the
iid assumption or the distribution assumption. All logarithms are base 2.

Largest Singular Value We will need the following standard fact about the largest
singular value. See for instance Theorem 4.4.5 from [Ver18].

Lemma 2.1 (Largest Singular Value).

P(∥A∥ ≥ C2.1

√
n) ≤ 2 exp(−n) ,

where C2.1 is a constant depending only on B.

ε-net for Sn−1 Let X ⊂ Rn. For ε > 0, a subset N ⊆ S is called an ε-net of X, if
for every x ∈ X, there exists y ∈ N such that ∥x − y∥2 ≤ ε. If X is not finite, then
we cannot directly union bound over it. However, we can apply union bound for the
epsilon net N and generalize the result to all x ∈ X by using the proximity in euclidean
distance. Here is a standard result when X = Sn−1:

Proposition 2.2 (ε-net for Sn−1). Let X ⊂ Sn−1 and ε > 0, then |N | ≤ (3ε )
n.

See for instance Corollary 4.2.13 from [Ver18].

Small Ball Probability

Definition 2.3 (Small Ball Probability). Let a = (a1, a2, . . . , an) ∈ Rn and ε > 0.
Let ξ1, . . . , ξn be iid random variables with variance at least 1 and subgaussian moment
bounded by B. Then, define

pε(a) := sup
t∈R

P(|
n∑

i=1

aiξi − t| ≤ ε) .

The small ball probability characterizes how anti-concentrated the random sum
is, because it measures the maximum probability mass a random sum falls inside an
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interval of length 2ε. The smaller is the small ball probability, the less concentrated is
the random sum.

For a fixed index set S ⊆ [n] and a vector x ∈ Rn, let xS ∈ R|S| denote the
restriction of x to S. That is, (xS)i = xsi for all 1 ≤ i ≤ |S|, where S = {s1 < s2 <
. . . , s|S|}. Moreover, let AS denote the submatrix of A consisting of columns whose
indices correspond to S. We have the following restriction lemma, which says the small
ball probability can only increase, if we restrict to a smaller support.

Proposition 2.4 (Restriction). For any a ∈ Rn and any S ⊆ [n] and any ε ≥ 0, we
have

pε(a) ≤ pε(a
S) .

This follows immediately after we condition on ξi for i ∈ [n]\S.

Tensorization Lemma For a random vector with independent entries, if we have
an anti-concentration estimate for each entry separately, then we have an estimate of
its ℓ2 norm. The name comes from that we tensorize a lower dimensional estimate to
a higher dimensional one.

Lemma 2.5 (Tensorization). Let ξ1, . . . , ξn be independent non-negative random vari-
ables. Let K, ε0 ≥ 0. Assume for each k, we have P(ξk < ε) ≤ Kε for all ε ≥ ε0, then
there exists some absolute constant C such that

P(
n∑

k=1

ξ2k < ε2n) ≤ (CKε)n for all ε ≥ ε0 .

3 Subgaussian Case

In this section, we will prove the following theorem [RV08]:

Theorem 3.1 (Invertibility: Subgaussian Case). Let A be an n×n real matrix, where
Aij are iid subgaussian random variables with variance at least 1 and subgaussian
moment at most B. For every ε > 0, we have

P(sn(A) ≤ εn−1/2) ≤ C3.1ε+ cn3.1 ,

where C3.1 ≥ 1, c3.1 ∈ (0, 1) are constants depending only on B.

Here are several remarks:

1. If we let ε → 0, we conclude that the singular probability of such random matrix
A is exponentially small. This in particular implies the singularity probability
of a random sign matrix is exponentially small. However, this proof can only
give c3.1 up to constant factors, so we cannot deduce the exact base (1/2 + ε)
immediately from this proof.

2. In general, both the linear term C3.1ε and the exponential term cn3.1 are needed.
On one hand, it is known that for random gaussian matrices, this upper bound
should be Cε [Ede88]. On the other hand, for random sign matrices, this upper
bound should be cn [KKS95].
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3.1 General Strategy

Recall that sn(A) = infx∈Rn:∥x∥2=1 ∥Ax∥2. Thus, it suffices to prove a lower bound
of ∥Ax∥2 for all x ∈ Sn−1. The first step is to divide the set of unit vectors into
compressible/incompressible vectors based on their structures. Recall that the support
of a vector v ∈ Rn is defined as supp(v) = {i ∈ [n] : vi ̸= 0}.

Definition 3.2 (δ−sparse Vectors). Let δ ∈ (0, 1). A vector v ∈ Rn is called δ-sparse
if |supp(v)| ≤ δn. We denote the set of δ-sparse vectors as Sparse(δ).

Definition 3.3 ((δ, ρ)-Compressible/Incompressible Vectors). Let ρ, δ ∈ (0, 1). A unit
vector v ∈ Sn−1 is (δ, ρ)−compressible, if there exists a δ-sparse vector w such that ∥v−
w∥2 ≤ ρ. Otherwise, it is called (δ, ρ)−incompressible. The set of (δ, ρ) compressible
vectors is denoted as Comp(δ, ρ) and incompressible vectors as Incomp(δ, ρ).

By definition, an incompressible vector is not close to any sparse vector. In other
word, the mass of it tends to spread out instead of concentrating on a few coordinates.
This intuition can be made precise as follows:

Proposition 3.4 (Incompressible implies spread). Let a ∈ Incomp(δ, ρ). Then, there

exists S ⊂ [n] of cardinality at least ρ2δ
2 n such that

ρ√
2

1√
n
≤ |ai| ≤

1√
δ

1√
n

∀i ∈ S .

Proof. Let S1 = {i ∈ [n] : |ai| < ρ√
2

1√
n
} and S2 = {i ∈ [n] : |ai| > 1√

δ
1√
n
}. The set S

in the statement equals [n]\(S1 ∪ S2). Since ∥a∥2 = 1, we know |S2| ≤ δn. Using the
definition of incompressiblity, we know that

ρ2 ≤ ∥a[n]\S2∥22 ≤ n · ρ
2

2n
+ |S| 1

δn
,

which implies |S| ≥ ρ2δ
2 n.

We call S the spread part of a. The proposition tells us each incompressible vector
has a large spread part. Moreover, we define â := (

√
na)S .

By definition, Sn−1 = Comp(δ, ρ) ⊔ Incomp(δ, ρ). Thus,

P(sn(A) ≤ εn−1/2) = P( inf
x∈Sn−1

∥Ax∥2 ≤ εn−1/2)

≤ P( inf
x∈Comp(δ,ρ)

∥Ax∥2 ≤ εn−1/2) + P( inf
x∈Incomp(δ,ρ)

∥Ax∥2 ≤ εn−1/2).

(1)

It remains to deal with compressible and incompressible vectors separately. For com-
pressible vectors, we use the set of sparse vectors as a ρ-net and union bound. For
incompressible vectors, we reduce the problem to a Littlewood-Offord type question
and then use a strong small ball probability estimate (that takes into account of the
structure of the vector).

By Lemma 2.1, we fix some constant K ≥ C2.1, so that

P(∥A∥ ≤ K
√
n) ≥ 1− 2 exp(−n) .

We may assume the condition ∥A∥ ≤ K
√
n holds, as exp(−n) cannot affect Theo-

rem 3.1. The subgaussian moment B and the upper bound on the largest singular
value K will be treated as fixed parameters below.
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3.2 Compressible Vectors

The goal of this section is to show

Lemma 3.5 (Invertibility: Compressible Vectors). There exists δ, ρ, C3.5, C
′
3.5 that

depend only on B,K such that

P( inf
x∈Comp(δ,ρ)

∥Ax∥2 ≤ C3.5

√
n) ≤ exp(−C ′

3.5n) .

Notice that this result is much stronger than required for Theorem 3.1. For any
ε > 0, if n is sufficiently large we can ensure

P( inf
x∈Comp(δ,ρ)

∥Ax∥2 ≤ εn−1/2) ≤ P( inf
x∈Comp(δ,ρ)

∥Ax∥2 ≤ C3.5

√
n) ≤ exp(−C ′

3.5n) .

Before proving the theorem, we need an auxiliary result that says the least singular
value of a rectangular matrix is large:

Lemma 3.6 (Least Singular Value of Rectangular Matrices [LPRTJ05]). Let G be an
n × k submatrix of A. Then, there exist C3.6, C

′
3.6 and δ3.6 ∈ (0, 1) depending only on

B,K such that if k ≤ δ3.6n, then

P( inf
x∈Sk−1

∥Gx∥2 ≤ C3.6

√
n) ≤ exp(−C ′

3.6n) . (2)

Proof of Lemma 3.5. The proof is a standard ε-net argument. We first prove the result
for sparse vectors. Let δ ≤ δ3.6 to be fixed and let k = ⌈δn⌉. Slightly abusing notations,

we define
([n]
k

)
to be all size k subsets of [n].

P( inf
y∈Sparse(δ)∩Sn−1

∥Ay∥2 ≤ C3.6

√
n) ≤ P(∃S ∈

(
[n]

k

)
: inf
y∈Sn−1

∥ASyS∥2 ≤ C3.6

√
n)

≤ P(∃S ∈
(
[n]

k

)
: inf
z∈Sk−1

∥ASz∥2 ≤ C3.6

√
n)

≤
(
n

k

)
exp(−C ′

3.6n) ≤ exp(−C ′
3.5n) (using (2)) ,

if we select a small enough δ, depending on C ′
3.6 and δ3.6.

By definition, we know that Sparse(δ) forms a ρ-net for Comp(δ, ρ). Thus, for
every x ∈ Comp(δ, ρ), we can find yx ∈ Sparse(δ) and zx ∈ Rn such that x = yx + zx
and ∥zx∥2 ≤ ρ. Using triangle inequality and the definition of the ∥A∥, we conclude
∥yx∥2 ≥ 1− ρ and

∥Ayx∥2 = ∥Ax−Azx∥2 ≤ ∥Ax∥2 + ∥A∥∥zx∥2 ≤ ∥Ax∥2 +Kρ
√
n.

Thus, if we select appropriate ρ and C3.5 depending only on C3.6, then

P( inf
x∈Comp(δ,ρ)

∥Ax∥2 ≤ C3.5

√
n) ≤ P( inf

yx∈Sparse(δ)
∥Ayx∥2 ≤ (C3.5 +Kρ)

√
n)

≤ P( inf
y′x∈Sparse(δ)∩Sn−1

∥Ay′x∥2 ≤
1

(1− ρ)
(C3.5 +Kρ)

√
n)

≤ P( inf
y′x∈Sparse(δ)∩Sn−1

∥Ay′x∥2 ≤ C3.6

√
n) ≤ exp(−C ′

3.5n) ,

which finishes the proof.
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3.3 Incompressible Vectors

The goal of this section is to show

Lemma 3.7 (Invertibility: Incompressible Vectors). Let δ, ρ, ε > 0. There exists
C3.7, C

′
3.7 that depends only on B,K such that

P( inf
x∈Incomp(δ,ρ)

∥Ax∥2 ≤ εn−1/2) ≤ C3.7ε+ exp(−C ′
3.7n) .

Assuming this is true, we can prove Theorem 3.1:

Proof of Theorem 3.1. Fix K ≥ C2.1 that depends only on B such that P(∥A∥ ≥
K
√
n) ≤ 2 exp(−n). Fix arbitrary ε > 0. Lemma 3.5 shows there exist δ, ρ, C3.5, C

′
3.5

depending only on B such that

P( inf
x∈Comp(δ,ρ)

∥Ax∥2 ≤ εn−1/2) ≤ exp(−C ′
3.5n) .

Lemma 3.7 shows there exist C3.7, C
′
3.7 that depend only on B such that

P( inf
x∈Incomp(δ,ρ)

∥Ax∥2 ≤ εn−1/2) ≤ C3.7ε+ exp(−C ′
3.7n) .

Putting them together, we conclude

P(sn(A) ≤ εn−1/2) ≤ C3.7ε+ exp(−C ′
3.7n) + exp(−C ′

3.5n) + 2 exp(−n) ≤ C3.1ε+ cn3.1 ,

for appropriately chosen C3.1, c3.1 that depend only on B and sufficiently large n.

3.3.1 Reduction to Littlewood-Offord Problem

We want to reduce the problem of estimating infx∈Incomp(δ,ρ) ∥Ax∥2 in Lemma 3.7
to a problem of estimating the lower bound of |⟨X,Y ⟩|, where both X,Y are random
vectors satisfying certain properties.

LetX1, . . . , Xn denote the columns ofA and letHk = span(X1, . . . , Xk−1, Xk+1, . . . , Xn).
We define the distance

dist(Xk, Hk) := inf
x∈Hk

∥Xk − x∥2 = sup
x∈H⊥

k ,∥x∥2=1

|⟨Xk, x⟩| .

Lemma 3.8 (Reduction to Distance Problem). For every δ, ρ ∈ (0, 1) and ε > 0, we
have

P( inf
x∈Incomp(δ,ρ)

∥Ax∥2 < εn−1/2) ≤ 1

δ
P
(
dist(Xn, Hn) ≤

ε

ρ

)
.

Proof. Let S = {i ∈ [n] : |xi| ≥ ρn−1/2}. From the definition of the incompressible
vectors, we conclude that |S| ≥ δn, since otherwise xS is a sparse vector and ∥x[n]\S∥2 <
ρ, a contradiction.

Let T = {i ∈ [n] : dist(Xi, Hi) ≥ ε
ρ}. If |T | > (1−δ)n, then by pigeonhole principle,

there exists i ∈ S ∩ T , meaning that |xi| ≥ ρn−1/2 and dist(Xi, Hi) ≥ ε
ρ . However,

∥Ax∥2 = sup
y∈Rn:∥y∥2=1

|⟨Ax, y⟩| ≥ max
i∈[n]

dist(Ax,Hi) = max
i∈[n]

|xi|dist(Xi, Hi) ≥ εn−1/2 .
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This contradicts the condition infx∈Incomp(δ,ρ) ∥Ax∥2 < εn−1/2). In other word,

inf
x∈Incomp(δ,ρ)

∥Ax∥2 < εn−1/2) =⇒ |T | ≤ (1− δ)n =⇒
n∑

i=1

1(dist(Xi, Hi) ≤
ε

ρ
) ≥ δn .

Apply Markov’s inequality and use the property that P(dist(Xi, Hi) ≤ ε
ρ) is the same

for all i, the proof is finished.

Note that dist(Xn, Hn) = supx∈H⊥
n ,∥x∥2=1 |⟨Xn, x⟩| ≥ |⟨Xn, X

∗⟩| for any unit vector

X∗ ∈ H⊥
n . Fix arbitrary such X∗ and call it a random normal. Our problem reduces

to prove a small ball probability estimate for a random normal:

P( inf
x∈Incomp(δ,ρ)

∥Ax∥2 < εn−1/2) ≤ 1

δ
P(|⟨Xn, X

∗⟩| ≤ ε

ρ
) =

1

δ
pε/ρ(X

∗) ,

where pε/ρ(X
∗) was defined in Definition 2.3.

3.3.2 Small Ball Probability Estimate

A weak small ball probability estimate can be derived immediately from the Berry-
Esséen central limit theorem (c.f. [RV08] Corollary 2.9). However, this only gives
polynomial dependency on n instead of exponential dependency in Theorem 3.1.

In order to prove strong small ball probability estimate, Rudelson and Vershynin
[RV08] introduced the notion of essential least common denominator (essential LCD).
Informally speaking, essential LCD measures the arithmetic structuredness of a vector.

Definition 3.9 (Essential LCD). Let α ∈ (0, 1), κ ∈ (0, n). For a vector a ∈ Rn, its
essential LCD, denoted by, Dα,κ(a) is defined to be the infimum of t > 0 such that all
except κ coordinates of ta are of distance at most α to nonzero integers. That is,

Dα,κ(a) := inf{t > 0 : |{i ∈ [n] : [(ta)i] > α}| = κ} ,

where [x] := min{x− ⌊x⌋, 1− x+ ⌊x⌋}.

It turns out that essential LCD efficiently controls the small ball probability for
vectors with bounded coefficients:

Theorem 3.10 (Small Ball Probability). Let ξ1, · · · , ξn be iid. subgaussian random
variables with variance at least 1 and subgaussian moment at most B. Let a ∈ Rn

be a vector satisfying K1 ≤ |ai| ≤ K2 for some constants K1,K2. Then, for every
α ∈ (0, 1), κ ∈ (0, n) and ε > 0, we have

pε(a) ≤
C3.10√

κ
(ε+

1

Dα,κ(a)
) + C3.10 exp(−c3.10α

2κ) ,

where C3.10, c3.10 are constants depending only on B,K1,K2.

This is the main technical contribution of [RV08]. It gives fairly good estimate when
coordinates are bounded by constants. The proof reduces the problem to studying the
Lebesgue measure of the level set of a certain function and showing that the essential
LCD efficiently controls it. The proof is outside the range of this report. Interested
readers should refer to the Section 4 of [RV08].

We now prove a special case of Theorem 3.10 where a is a random normal. For this
purpose, we first show a random normal is very likely to be incompressible and then
restrict it to its spread part.
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Proposition 3.11 (Random normal is incompressible). There exists constant C3.11

depeneding only on B,K such that

P(X∗ ∈ Comp(δ, ρ)) ≤ exp(−C3.11n) .

Proof. By definition, X∗ is orthogonal to X1, . . . , Xn−1. We can therefore reuse the
proof of Lemma 3.5, with n replaced by n− 1.

Corollary 3.12 (Small Ball Probability for Random Normal). There exists δ, ρ, C3.11

that depend only on B,K such that for any α ∈ (0, 1), κ ∈ (0, n) and ε > 0, with
probability at least 1− exp(−C3.11n), we have

pε(X
∗) ≤ C3.10√

κ
(
√
nε+

1

Dα,κ(X̂∗)
) + C3.10 exp(−c3.10α

2κ) ,

where C3.10, c3.10 depend only on B,K.

Proof. Proposition 3.11 ensures the random normal X∗ is spread with probability
1−exp(−C3.11n) and Proposition 3.4 ensures it has a large spread part. The restriction
proposition (Proposition 2.4) tells us

pε(X
∗) = p√nε(

√
nX∗) ≤ p√nε(X̂

∗) ,

where X̂∗ is the restriction of
√
nX∗ to only its spread part. At last, we use small ball

probability estimate (Theorem 3.10), with K1 =
ρ√
2
and K2 =

1√
δ
.

3.3.3 Proof of Lemma 3.7

The remaining step is to show that the essential LCD of a random normal X∗ is
exponentially large with very high probability, which gives a strong enough small ball
probability estimate to finish the proof. To prove this, we will dyadically partition
Incomp(δ, ρ) based on the essential LCD and show that X∗ does not belong to any
subset of Incomp(δ, ρ) whose essential LCD is below an exponential order.

Lemma 3.13 (Random Normal has Large Essential LCD). There exist α ∈ (0, 1/2), κ ∈
(0, n), c3.13, c

′
3.13 depending only on B and K such that

P(Dα,κ(X̂∗) ≤ ec3.13n) ≤ exp(−c′3.13n) .

We will choose α ∈ (0, 1/2) later. Let K1 =
ρ√
2
,K2 =

1√
δ
and n0 =

ρ2δn
2 . Note that

the definition of the essential LCD implies Dα,n0/2(X̂
∗) ≥ 1−α

K2
> 1

2K2
. Let D0 := 1

2K2

denote this lower bound.
For any D0 ≤ D ≤ exp(c3.13n), define the level set SD := {x ∈ Incomp(δ, ρ) : D ≤

Dα,n0/2(X̂
∗) ≤ 2D}. We now show that on SD, there is a 4α/D net of “small” size.

The saving on the exponent turns out to be crucial for the theorem.

Lemma 3.14 (Small net for SD). There exist α0 ∈ (0, 1), c3.14, C3.14 depending only
on B and K such that for α ≤ α0 and D ≥ D0, there exists a (4α/D)-net for SD, with
cardinality at most ( C3.14D

α1−c3.14
)n.
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Proof. Fix arbitrary x ∈ SD. Recall that x ∈ SD means D ≤ Dα,n0/2(x̂) ≤ 2D.
Combining with the definition of LCD (Definition 3.9), we conclude that there exists
an integer vector p ∈ Zsupp(x̂) such that |pi −Dα,n0/2(x̂)x̂i| ≤ α for n0 − n0/2 = n0/2
coordinates.

For other coordinates, choose the closest one from αZ. By construction, this new
vector q (as an extension of p), satisfies |qi −

√
nDα,n0/2(x̂)xi| ≤ α for all i ∈ [n] and

q ∈ Q :=
⋃

S⊆[n]

|S|=n0
2

ZS ⊕ αZ[n]\S .

Then, by summing up coordinates, we know ∥
√
nD(x̂)x− q∥2 ≤ α

√
n, which futher

implies

∥x− q√
nD(x̂)

∥2 ≤
α

Dα,n0/2(x̂)
≤ α

D
≤ α0

D0
≤ 1/4 ,

if we choose α0 ≤ D0/4.
By elementary calculations, we conclude ∥x − q

∥q∥2 ∥2 ≤ 2α/D and ∥q∥2 ≤ 3
√
nD.

Define Bn
2 := {x ∈ Rn : ∥x∥2 ≤ 1}. Then, we have a (2α/D)-net of the form:

N = { q

∥q∥2
: q ∈ Q ∩ 3

√
n ·Bn

2 } .

It is not necessarily true that N ⊆ SD. However, this can be easily fixed at the cost of
making it a (4α/D)-net via a standard trick.

We now calculate the size of the net.

|N | ≤ |Q ∩ 3
√
nD ·Bn

2 |

≤
(

n

n0/2

)
|Zn0/2 ∩ 3

√
nD ·Bn0/2

2 | · |αZn−n0/2 ∩ 3
√
nD ·Bn−n0/2

2 |

≤ 2n(3C ·D)n0/2(
3C ·D

α
)n−n0/2 ≤ (

C3.14D

α1−c3.14
)n ,

where C is an absolute constant.

Proof of Lemma 3.13. Fix some constant c > 0 and any D0 ≤ D ≤ ecn. We will argue
that with very high probability, X∗ /∈ SD. Equivalently, no vector x ∈ SD satisfies
⟨x,Xi⟩ = 0 for all i ∈ [n− 1].

Fix arbitrary x ∈ SD. Define y ∈ Rn−1, where yi := ⟨Xi, x⟩ for 1 ≤ i ≤ n− 1.
By Corollary 3.12, we conclude

P(|yi| < ε) ≤ pε(x) ≤
C3.10√

κ
(
√
nε+

1

Dα,κ(x̂)
) + C3.10 exp(−c3.10α

2κ) ≤ Cε+ C
1√
nD

,

for some large enough C depending only onB,K. By tensorization lemma (Lemma 2.5),

P(∥y∥2 ≤ ε
√
n) ≤ (Cε+

C√
nD

)n−1 .

If we choose ε = 5Kα
D , then the first term dominates, so

P(∥y∥2 <
5Kα

D

√
n) ≤ (C ′ 5Kα

D
)n−1 .

10



Taking an union bound over the net in Lemma 3.14, we conclude

P(∃x ∈ N : ∥Ax∥2 ≤
5Kα

D

√
n) ≤ (

C3.14D

α1−c3.14
)n · (C ′ 5Kα

D
)n−1 ≤ e−n ,

if we choose α sufficiently small in the range of (n−1/2, α0), depending on B,K.
Now, we transfer the net result to the whole sphere:

inf
x∈SD

∥Ax∥2 ≥ inf
y∈N

{
∥Ay∥2 − ∥x− y∥2∥A∥

}
≥ Kα

D

√
n .

Thus, with probability at least 1− exp(−n), we have infx∈SD
∥Ax∥2 ≥ Kα

D

√
n.

It remains to dyadically divide the range of D and union bound over all D. Since
D0 ≤ D ≤ ecn, there are only polynomially many events. Because each happens with
an exponential probability, the proof is finished.

Proof of Lemma 3.7. This is an immediate corollary of Corollary 3.12 and Lemma 3.13.

4 Random Sign Case

The goal of the section is to prove Theorem 1.2. From Theorem 3.1, we already know
the correct answer is cn for some c ∈ (0, 1), so the focus now is to get the asymptotically
exact base (1/2+ε). For convenience, we redefine the small ball probability of a vector
a ∈ Rn to be,

pε(a) = sup
t∈R

P(|
n∑

i=1

aiξi − t| ≤ ε) ,

where ξi are distributed as iid Ber(1/2).

4.1 General Strategy

The starting move of Tikhomirov’s proof is exactly the same as Rudelson and
Vershynin’s: divide the sphere into compressible and incompresible vectors and deal
with them separately. By taking δ, ρ small enough, we can prove (1/2 + ε)n bound for
compressible vectors using the exact same proof as Lemma 3.5. Next, following the
same reduction steps, the invertibility for incompressible vectors reduces to estimate
the small ball probability for a random normal. This is where the approach differs.
However, broadly speaking, structure of the proof for this part is still similar. We find
a parameter (which was essential LCD) that characterizes the small ball probability,
dyadically partition the set of incompressible vectors based on it, and then show that
the random normal does not belong to weak parameter parts, which leads to a strong
small ball probability estimate. Now we describe the differences in detail.

The parameter chosen in [Tik20] is called threshold:

Definition 4.1 (Threshold). Let x ∈ Sn−1 and L > 0. The threshold

T (x, L) := sup{t ∈ (0, 1] : pt(x) > Lt} .

The connection with the small ball probability is as follows: Fix x and L. Note
pt(x) is an increasing function in t. If t < T (x, L), then pt(x) ≤ pT (x,L)(x) ≤ LT (x, L).

11



If t > T (x, L), then by definition, we know pt(x) ≤ Lt. Thus, we have a small ball
probability estimate pt(x) = Lmax(T (x, L), t). Threshold can be viewed as a lower
bound of the range of t where the small ball probability estimate is good. The goal
now is to prove the following, which directly implies Theorem 1.2:

Lemma 4.2 (Random Normal has Small Threshold). There exists L > 0 such that with
probability at least 1− 2−n, the threshold of random normal T (X∗, L) ≤ (1/2+ o(1))n.

Let δ, ρ be parameters in Lemma 3.5. Fix L > 0, ε > 0 and T ≤ (1/2 + ε)n. Define

R(T ) := {x ∈ Incomp(δ, ρ) : T ≤ T (x, L) ≤ 2T} .

In order to show X∗ /∈ R(T ) for any T ≤ (1/2 + o(1))n, Tikhomirov constructed a
subset of the integer lattice NT such that for every (properly scaled) x ∈ R(T ), there is
an integer vector y ∈ NT which closely resembles x entrywise and in terms of threshold
using an idea called “randomized rounding”. Then by union bound,

P(x ∈ R(T )) ≤ |NT | max
y∈NT

P(y is almost orthogonal to X1, · · · , Xn−1) .

As comparison, recall that an ε-net is used instead of an intger lattice in the old
approach. The probability is estimated using Tensorization lemma (Lemma 2.5) as
before. The size of the net uses a new idea named “inversion of randomness”. Instead
of estimating |NT | directly, we first find a larger lattice subset MT ⊇ NT whose size
is easy to compute. Then, Tikhomirov showed that if we sample a vector uniformly
at random from MT (random for each coordinate), the threshold of this vector is
not in the range of (T, 2T ], with probability superexponentially close to 1. Thus,
|NT | ≤ |MT | exp(−ω(n)) ≪ 2−n for sufficiently large n. It remains to union bound
over different T (only polynomially many of them) to finish the proof.

4.2 Random Averaging Over ℓ1 norm

The superexponential probability guarantee is a special case of a much general
phenomenon. In order to describe it, we first introduce the concept of an admissible
set, which is a structured subset of Zn.

Definition 4.3 (Admissible Set). Let N,n ≥ 1 be integers, δ ∈ (0, 1], and K ≥ 1 be
some real number. A subset A ⊂ Zn is (N,n,K, δ)-admissible if

� A = A1 × · · · ×An where every Ai is an origin-symmetric subset of Z.
� For every i ≤ δn, Ai ∩ [−N,N ] = ∅ and Ai is a union of two integer intervals of

total cardinality at least 2N .

� For every i > δn, Ai is an integer interval of cardinality at least 2N + 1.

� |A1| · · · |An| ≤ (KN)n.

� For all 1 ≤ i ≤ n, maxAi < nN .

Then, on an admissible set A, we can define an averaged version of f as follows:

Definition 4.4 (Averaged function). Let f : Z → R be an arbitrary function and let
A be an (N,n,K, δ)-admissible set for some N,n,K, δ. For 1 ≤ ℓ ≤ n, the averaged
version of f is defined as:

fA,ℓ(t) :=
∑

v∈{0,1}ℓ
2−ℓf(t+ v1X1 + · · ·+ vℓXℓ)

where each Xi is drawn uniformly from Ai uniformly at random and independently.
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Note that fA,ℓ(·) is a random function, whose randomness comes from Xis.
Intuitively, averaging should smooth out the spikes of the function, so we expect

that averaged function should have much smaller ℓ∞ norm. It turns out this is indeed
the case, subject to some conditions on the function f :

Theorem 4.5 (ℓ∞ Estimate). Fix any δ ∈ (0, 1], ε ∈ (0, p),K,M ≥ 1, there exist
n4.5 = n4.5(δ, ε,K,M) ≥ 1, η4.5 = η4.5(δ, ε,K,M) ∈ (0, 1] and L4.5 = L4.5(δ, ε,K) > 0
such that if n ≥ n4.5, 1 ≤ N ≤ (1/2+ ε)−n and A is an (N,n,K, δ)-admissible set, and
f : Z → R is a non-negative function with ∥f∥1 = 1 and log2 f is η4.5-Lipschitz. Then,

PX1,...,Xn(∥fA,n∥∞ > L4.5(N
√
n)−1) ≤ exp(−Mn) .

The crucial point of this theorem is the parameter controlling the ℓ∞ of the average
(L4.5) is decoupled from the one that controls the probability M . It means after fixing
δ, ε and K, the L4.5 is fixed, whereas we can take M arbitrarily large, at the cost of
increasing n4.5 and decreasing η4.5.

Although intuitively clear, this phenomenon is highly non-trivial and interested
reader should refer to Section 4 in [Tik20] for the proof. Instead, we demonstrate why
it is useful for the invertibility problem.

Corollary 4.6. Let δ, ε ∈ (0, 1],K,M ≥ 1. There exists n4.6 = n4.6(δ, ε,K,M) ≥
1, L4.6 = L4.6(δ, ε,K) > 0 such that if n ≥ n4.6, 1 ≤ N ≤ (1/2 + ε)−n and A is an
(N,n,K, δ)-admissible set, then

PX1,...,Xn(p
√
n((X1, . . . , Xn)) ≥

L4.6

N
) ≤ exp(−Mn) .

Proof. Consider the function f(t) := 1
m2

− |t|√
n , where m =

∑
t∈Z 2

−|t|/
√
n. By definition,

∥f∥1 = 1 and log2 f is n−1/2 Lipschitz. Moreover, it is easy to verify for −
√
n ≤ t ≤

√
n,

for some absolute constant c, we have f(t) ≥ c√
n
1{−

√
n ≤ t ≤

√
n}.

Now apply Theorem 4.5, we get

PX1,...,Xn(∥fA,n∥∞ ≥ L4.5(N
√
n)−1) ≤ exp(−Mn) .

Condition on a fixed realization of (X1, . . . , Xn) ∈ A, we have

p√n((X1, . . . , Xn)) ≥
L4.6

N
=⇒ sup

λ
Pξ{−

√
n ≤

n∑
i=1

Xiξi − λ ≤
√
n} ≥ L4.6

N

=⇒ sup
λ

Pξ(f(

n∑
i=1

Xiξi − λ)) ≥ cL4.6

N
√
n

=⇒ ∥fA,n∥∞ ≥ L4.5(N
√
n)−1 .

Thus, this is true also for unconditioned (X1, . . . , Xn), which finishes the proof.

4.3 Randomized Rounding

We need to show that for every vector x ∈ Rn, there exists an integer vector y ∈ Zn

that almost preserves its anti-concentration property and is close to it.

Lemma 4.7 (Randomized Rounding). Let x ∈ Rn and L > 0. Let λ be a number such
that P(|

∑n
i=1 bixi−λ| ≤ t) ≤ Lt, where each bi are iid Ber(1/2). Then, there exists an

integer vector y ∈ Zn satisfying:
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1. ∥x− y∥∞ ≤ 1,

2. P(|
∑n

i=1 biyi − λ| ≤ t) ≤ C4.7Lt for all t ≥
√
n,

3. p√n(y) ≥ c4.7p√n(x),

4. |
∑n

i=1 xi −
∑n

i=1 yi| ≤ C4.7
√
n,

where C4.7, c4.7 are absolute constants.

Proof Sketch. The method of finding this vector y is called randomized rounding. The
idea is to set yi = ⌊xi⌋ with probability pi and ⌊xi⌋ + 1 with probability 1 − pi and
select pi appropriately so that Eyi = xi. Then, it remains to argue that the failure
probability for each property is small enough, so that their sum is strictly less than 1.
See Lemma 5.3 in [Tik20] for details.

Apply this lemma to a
√
n

T (x,L)x and use the definition of T (x, L), we get an integer
vector y ∈ Zn satisfying:

(a) ∥
√
n

T (x,L)x− y∥∞ ≤ 1,

(b) P(|
∑n

i=1 biyi −
√
n

T (x,L)

∑n
i=1 xi| ≤ t) ≤ C4.7LT (x,L)√

n
t for all t ≥

√
n,

(c) p√n(y) ≥ c4.7LT (x, L),

(d) |
√
n

T (x,L)

∑n
i=1 xi −

∑n
i=1 yi| ≤ C4.7

√
n .

After possibly permuting the entries, the vector y has some structure. More impor-
tantly, the set of permutations that reveals structure for any such y has a cardinality
only exponentially large, which is ignorable when compared to the superexponentially
small probability.

Lemma 4.8 (Structure of Integer Approximation). Let y ∈ Zn be an integer approxi-

mation for some
√
n

T (x,L)x. There exists a set of permutations Π of size at most Cn
4.8 for

some absolute constant C4.8 > 0 satisfying the following: for every such y, there exists
π ∈ Π such that ỹ = yπ satisfies

� |ỹi| > ν
T (x,L) − 1 for all i ≤ δn,

� |ỹi| ≤ 2(j+1)/2
√
δT (x,L)

+ 1 for i ≥ 2−jδn and 0 ≤ j ≤ log(δn).

Proof Sketch. Π consists of all chains of subsets [n] ⊃ I0 ⊃ I1 ⊃ · · · ⊃ Ilog(δn), where
|Ii| = δn2−i. Thus,

|Π| ≤
(
n

δn

)(
δn
1
2δn

)
· · ·

(
2

1

)
≤ 22δn−1 ≤ 4n .

Given a vector y, we sort its entries decreasingly according to the absolute values.
By definition, there exists π ∈ Π that agrees with this order for the first δn entries
(ignoring the order within each subset). From the definition of incompressibility, it is
not hard to verify that this π satisfies these two properties, using a simple argument
similar to Proposition 3.4.
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Let n ≥ 2, δ ∈ [1/n, 1/2], ν ∈ (0, 1] and T ∈ (0, 1] such that ν/T ≥ 2. Define

Ai :=



Z ∩ [−2
√
n

T
− 1,

2
√
n

T
+ 1]\[1− ν

T
,
ν

T
− 1] if i = 1

Z ∩ [−2(j+3)/2

√
δT

− 1,
2(j+3)/2

√
δT

+ 1] if 1 ≤ j ≤ log(δn) and 2−jδn ≤ i ≤ 2−j+1δn

Z ∩ [−
√
8√
δT

− 1,

√
8√
δT

+ 1] if i > δn .

and take A(n, δ, ν, T ) = A1 × · · · ×An ⊂ Zn. From the definition, it is straightforward
to vertify that for each vector x ∈ R(T ), there exists y ∈ Zn that is an approximation

for
√
n

T (x,L) and π ∈ Π satisfying yπ ∈ A(n, δ, ν, T ). Moreover,

Proposition 4.9 (A(n, δ, ν, T ) is Admissible). For any δ ∈ (0, 1/2] and ν ∈ (0, 1],
there exists n4.9 = n4.9(δ, ν) ≥ 1, K4.9 = K4.9(δ, ν) ≥ 1 such that for any n ≥ n4.9 and
T ∈ (0, ν/2] and set N = ⌊ ν

T ⌋ − 1 such that A(n, δ, ν, T ) is (N,n,K4.9, δ)-admissible.

4.4 Proof of Lemma 4.2

Before proving Lemma 4.2, we first state a simple upper bound on the threshold,
which determines the range of thresholds we need to consider (for the same purpose,
recall we had a lower bound D0 for essential LCD, see the text below Lemma 3.13).

Proposition 4.10 (Upper Bounds on Threhsold). For every δ, ν ∈ (0, 1], there exist
K4.10 = K4.10(δ, ν) > 0 and L4.10 = L4.10(δ, ν) ≥ 1 such that for n ≥ 2 and L ≥ L4.10

and x ∈ Incomp(δ, ν), we have T (x, L) ≤ K4.10 · n−1/2.

Proof Sketch. Use the restriction restriction (Proposition 2.4) on the spread part of
x and then use standard results on the small ball probability for binomial random
variables.

Proof of Lemma 4.2. Fix L ≥ L4.10 so that T (x, L) ≤ K4.10/
√
n. Recall that δ, ν was

fixed by Lemma 3.5 and we defined R(T ) = {x ∈ Incomp(δ, ν) : T ≤ T (x, L) ≤ 2T}.
Dyadically partition the thresholds into Tj = 2−jK4.10/

√
n for j = 0, 1, . . . . It suffices

to focus our attention to T (X∗, L) ∈ R(Tj) for some j ≤ ⌊−n log(12 + ε)⌋. Fix an
arbitrary j in this range and let T = Tj . Our goal is to upper bound P(T (X∗, L) ∈
R(T )). Let

NT = {y : y is approximation of

√
n

T (x, L)
x for some x ∈ R(T )} ⊂ Zn .

Recall that X1, . . . , Xn are columns of A. If X∗ ∈ R(T ), then we know ⟨
√
n

T (x,L)x, Xi⟩ =
0 for all 1 ≤ i ≤ n − 1. From Lemma 4.7, we know that there exists y ∈ NT that
approximates X∗ well. The properties of y allows us to deduce that

∥(⟨X1, y⟩, . . . , ⟨Xn−1, y⟩)∥2 ≤ Cn ,

for some constant C > 1. By union bound, we conclude that

P(X∗ ∈ R(T )) ≤ |NT |P(∥(⟨X1, y⟩, . . . , ⟨Xn−1, y⟩)∥2 ≤ Cn) .
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The probability estimate follows from an application of the tensorization Lemma 2.5,
same as the previous proof. To estimate the cardinality of the net, we use Lemma 4.8.
Define N ′

T = {yπ : y ∈ NT , π ∈ Π}. It is immediate that |NT | ≤ |Π| · |N ′
T | ≤ Cn

4.8|N ′
T |.

From Proposition 4.9, we know that N ′
T ⊆ A and that A is an (N,n,K4.9, δ)-admissible

set. Note that permuting entries does not change the small ball probability estimate of
y. In particular, vector y′ ∈ N ′

T has a lower bound of L
N on the small ball probability

that comes from y ∈ NT and further from the vector
√
n

T (x,L)x.
Now we can use the definition of admissible set and Corollary 3.12 to conclude that

|N ′
T | ≤ exp(−Mn)|A| ≤ exp(−Mn)(KN)n. For large enough M , the superexponen-

tially low probability clearly dominates over the exponential terms. Thus,

P(X∗ ∈ R(T )) ≤ Cn
4.8(KN)n exp(−Mn) = o(2−n)

for large enough n. It remains to union bound over polynomially many different T .
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