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1. INTRODUCTION

The rotation project was a part of a work on the equipartition principle for Wigner matrices done by
the author in collaboration with Giorgio Cipolloni, Laszlo Erdős and Joscha Henheik. The results of this
bigger project are presented in [2]. Most of the content of the current report can be found in [2, Section 4].
However, here we discuss the proof of Lemma 3.2 in more details and give an alternative description of M
in Appendix A.

It is well-known that resolvents of large random matrices are typically well approximated by their deter-
ministic counterparts both in averaged and in isotropic sense. Such results are called local laws. Moreover,
one can look at products of several resolvents and ask if they also tend to be deterministic when the size
of a random matrix goes to infinity. It turns out that the answer is positive for Wigner matrices [4] and for
Hermitization of matrices with independent identically distributed entries [3]. The main goal of the rotation
project was to prove the similar result for deformed Wigner matrices by using the Ψ-approach from [4]
and [3].

2. SET-UP AND MAIN RESULTS

2.1. Model.

Definition 2.1. LetW be a real symmetric or complex Hermitian Wigner matrix, i.e. a matrix with indepen-
dent entries up to the symmetry constraint satisfying wab = N−1/2Xod, for a > b, and waa = N−1/2Xd.
Let D be a bounded deterministic matrix of the same size with the corresponding symmetry type. Then the
matrix H :=W +D is called a deformed Wigner matrix.

We will need to make the following technical assumption about W :

Assumption 2.2. We assume that χd is a real centered random variable, that χod is a real or complex
random variable such that Eχod = 0 and E|χod|2 = 1; additionally in the complex case we also assume
that Eχ2

od = 0. Furthermore, we assume that all the moments of χod and χd exist, i.e. for any p ∈ N there
exists a constant Cp > 0 such that

(2.1) E|χod|p +E|χd|p ≤ Cp.

In the sequel deformation D will be fixed but N -dependent and we will omit the dependence on D in
notations.

2.2. Notations and conventions. For positive quantities f, g we write f ≲ g and f ∼ g if f ≤ Cg or
cg ≤ f ≤ Cg, respectively, for some constants c, C > 0 which depend only on the constants appearing in
the moment condition, see (2.1).

We denote vectors by bold-faced lower case Roman letters x,y ∈ CN , for some N ∈ N. Vector
and matrix norms, ∥x∥ and ∥A∥, indicate the usual Euclidean norm and the corresponding induced matrix
norm. For any N ×N matrix A we use the notation ⟨A⟩ := N−1TrA to denote the normalized trace of A.
Moreover, for vectors x,y ∈ CN and matrices A ∈ CN×N we define the scalar product

⟨x,y⟩ :=
N∑
i=1

xiyi .
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2 MULTI-RESOLVENT LOCAL LAWS FOR DEFORMED WIGNER MATRICES

Finally, we will use the concept of “with very high probability” meaning that for any fixed D > 0 the
probability of an N -dependent event is bigger than 1−N−D for N ≥ N0(D). We introduce the notion of
stochastic domination (see e.g. [5]): given two families of non-negative random variables

X =
(
X(N)(u) : N ∈ N, u ∈ U (N)

)
and Y =

(
Y (N)(u) : N ∈ N, u ∈ U (N)

)
indexed by N (and possibly some parameter u in some parameter space U (N)), we say that X is stochasti-
cally dominated by Y , if for all ξ,D > 0 we have

(2.2) sup
u∈U(N)

P
[
X(N)(u) > NξY (N)(u)

]
≤ N−D

for large enough N ≥ N0(ξ,D). In this case we use the notation X ≺ Y or X = O≺(|Y |). We also use
the convention that ξ > 0 denotes an arbitrary small constant which is independent of N .

2.3. Main results. Let D be a self-adjoint N × N matrix, z ∈ C\R. The matrix Dyson equation (MDE)
for deformed Wigner matrices is defined as follows:

(2.3) − 1

M(z)
= z −D + ⟨M(z)⟩.

It is known that MDE has a solution and for z in the upper half-plane under assumption ℑM(z) > 0 it is
unique. In the sequel we will denote this solution by M(z) =MD(z). It turns out that M(z) approximates
the resolvent G(z) := (H − z)−1 in the sense of the following local laws:

(2.4) |⟨(G(z)−M(z))A⟩| ≺ 1

N |ℑz|
,

(2.5) |⟨x, (G(z)−M(z))y⟩| ≺ 1√
N |ℑz|

in the regime |ℑz| ≫ 1
N for any bounded matrix A and vectors x,y (see e.g. [1]). Next we define the

deterministic approximation of the product chains of the form

(2.6) G(z1)A1G(z2)A2 · · ·Ak−1G(zk),

where z1, z2, . . . , zk are spectral parameters and matrices A1, A2, . . . , Ak−1 are deterministic.

Definition 2.3. The N × N matrix M(z1, A1, z2, A2, . . . , Ak−1, zk) which we call the deterministic ap-
proximation of the product (2.6) is the solution of the following recurrence relation:

(2.7) M (z1, A1, . . . , Ak−1, zk) =M(z1)A1M (z2, A2, . . . , Ak−1, zk)+

+

k−1∑
j=2

⟨M(z1, A1, . . . , Aj−1, zj)⟩M(z1)M(zj , Aj , . . . , Ak−1, zk)+

+ ⟨M(z1, A1, . . . , Ak−1, zk)⟩M(z1)M(z2).

In Appendix A we prove that (2.7) defines M uniquely and give a more explicit description of the
deterministic approximation. In particular, this description implies that M satisfies another recurrence
relation which will be used further in calculations:

(2.8) M(z1, A1, . . . , Ak−1, zk) =M(z1, A1M(z2)A2, z3, A3, . . . , Ak−1, zk)+

+ ⟨M(z1)A1M(z2)⟩M(z1, I, z2, A2, z3, A3, . . . , Ak−1, zk)+

+ ⟨M(z2, A2, z3)⟩M(z1, A1M(z2), z3, A3, . . . , Ak−1, zk) + · · ·+
+ ⟨M(z2, A2, z3, . . . , Ak−1, zk)⟩M(z1, A1M(z2), zk).

Our goal is to estimate the difference

G(z1)A1G(z2)A2 · · ·Ak−1G(zk)−M(z1, A1, z2, A2, . . . , Ak−1, zk)

both in averaged and in isotropic sense. Note that in Wigner case this fluctuation becomes much smaller
if some of the matrices Aj are traceless. A similar phenomenon is observed also for deformed Wigner
matrices, but the condition on Aj which replaces tracelessness depends on a place of Aj in the product
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chain. More precisely, it depends on zj and zj+1. This leads us to the definition of regular observable (we
sometimes refer to deterministic matrices Aj as to observables because of the application of local laws to
the eigenstate thermalization hypothesis).

Definition 2.4 (Regular observables). Regular part of A with respect to spectral parameters z1, z2 ∈ C\R:

A◦z1,z2 := A− φ(z1, A, z2) · I,
where

(2.9) φ(z1, A, z2) = uδ(z1, z2)
⟨M (E1 + iℑz1)AM (E2 + iσℑz2)⟩
⟨M (E1 + iℑz1)M (E2 + iσℑz2)⟩

,

uδ(z1, z2) = uδ(E1 − E2)uδ(ℑz1)uδ(ℑz2),
where uδ is a smooth cut-off function with supp(u) ⊂ [−2δ, 2δ], uδ(x) = 1, x ∈ [δ, δ] and σ =
− sign (ℑz1ℑz2). Fixed parameter δ > 0 is N -independent and will be chosen later.

We will say that matrix B is regular with respect to spectral parameters z1 and z2 if B◦z1,z2 = B.

Definition 2.5 (Spectral domain). Let ρ be the self-consistent density of states corresponding to (2.3). Fix
(small) κ, ε > 0. The (κ, ε)-spectral domain is the following N -dependent set in the complex plane:

D(κ,ε) :=
{
z = E + iη ∈ C : E ∈ supp(ρ), dist (E, ∂supp(ρ)) > κ,N−1+ε < |η| < N100

}
.

Remark 2.6. (1) We will refer to D(κ,ε) as to the spectral domain omitting the dependence on κ and ε.
(2) Further the control parameter η will be the minimum of absolute values of imaginary parts of

spectral parameters participating in the formula.

Note that ∥A◦z1,z2 ∥ ≲ 1, when z1, z2 are in the spectral domain and ∥A∥ ≲ 1. Now we can formulate
our main result.

Theorem 2.7 (Multi-resolvent local laws with 1 and 2 observables). For spectral parameters in the spectral
domain and for bounded observables it holds that

1.1) 1-G averaged local law:

|⟨(G(z)−M(z))A◦z,z ⟩| ≺ 1

N
√
η
,

1.2) 2-G isotropic local law:

|⟨x, (G(z1)A◦z1,z2G(z2)−M(z1, A
◦z1,z2 , z2))y⟩| ≺

1√
Nη2

,

2.1) 2-G averaged local law:∣∣∣〈(G(z1)A◦z1,z2
1 G(z2)−M(z1, A

◦z1,z2
1 , z2))A

◦z2,z1
2

〉∣∣∣ ≺ 1

Nη
,

2.2) 3-G isotropic local law:∣∣∣〈x,(G(z1)A◦z1,z2
1 G(z2)A

◦z2,z3
2 G(z3)−M

(
z1, A

◦z1,z2
1 , z2, A

◦z2,z3
2 , z3

))
y
〉∣∣∣ ≺ 1√

Nη3
.

We do not present the entire proof of Theorem 2.7, but focus on one of its main ideas (Lemma 3.2) in
the following section. For the complete proof we refer to [2, Section 6].

Theorem 2.7 can be used to establish the Eigenstate Thermalization Hypothesis (ETH) for deformed
Wigner matrices (see [2, Theorem 2.6]), which roughly speaking states that any observable becomes es-
sentially diagonal in the eigenbasis of a deformed Wigner matrix and gives quantitative estimates for this
phenomenon. This, in turn, implies after some argument the equipartition principle for Wigner matrices [2,
Theorem 2.2], which in the simplest setting means that for Wigner matrices W1 and W2 and the eigenbasis
{uj}Nj=1 of H :=W1 +W2 the energy λj = ⟨uj , Huj⟩ is equally shared between the summands:

⟨uj ,W1uj⟩ ≈
λj
2

≈ ⟨uj ,W2uj⟩.

Theorem 2.2 from [2] also gives quantative estimates for fluctuations of ⟨uj ,Wkuj⟩, k = 1, 2, around
λj/2.
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3. MAIN TECHNICAL LEMMA

In order to estimate the differences in Theorem 2.7 we introduce the following control quantities:

Ψav
k (zk,Ak) := Nηk/2|⟨G1A1 · · ·GkAk −M(z1, A1, ..., zk)Ak⟩| ,(3.1)

Ψiso
k (zk+1,Ak,x,y) :=

√
Nηk+1

∣∣∣(G1A1 · · ·AkGk+1 −M(z1, A1, ..., Ak, zk+1)
)
xy

∣∣∣(3.2)

for k ∈ N, where we used the short hand notations

Gi := G(zi) , η := min
i

|ℑzi| , zk := (z1, ..., zk) , Ak := (A1, ..., Ak) .

The deterministic matrices ∥Ai∥ ≤ 1, i ∈ [k], are assumed to be regular. For convenience, we extend the
above definitions to k = 0 by

Ψav
0 (z) := Nη|⟨G(z)−M(z)⟩| , Ψiso

0 (z,x,y) :=
√
Nη
∣∣(G(z)−M(z)

)
xy

∣∣.
We will also use the definition of the second order renormalization, denoted by underline, from [3]. For a
function f(W ) of the Wigner matrix W , we define

Wf(W ) :=Wf(W )− Ẽ
[
W̃ (∂W̃ f) (W )

]
,

where ∂W̃ denotes the directional derivative in the direction of W̃ , which is a GUE/GOE matrix (depending
on the symmetry class of W ) that is independent of W . The expectation is taken w.r.t. the matrix W̃ .
Normally Wf(W ) is much smaller then Wf(W ) in the sense of stochastic domination. We will often use
the following representation of resolvent:

(3.3) G =M −MWG+M⟨G−M⟩G.

Definition 3.1 (Uniform bounds in the spectral domain). For a fixed k ∈ N we say that the bounds∣∣⟨G(z1)B1 · · · G(zk)Bk −M(z1, B1, ..., zk)Bk⟩
∣∣ ≺ Eav ,∣∣∣(G(z1)B1 · · · BkG(zk+1)−M(z1, B1, ..., Bk, zk+1)

)
xy

∣∣∣ ≺ E iso
(3.4)

hold uniformly for some deterministic control parameters Eav/iso = Eav/iso(N, η), depending only on
N and η := mini |ℑzi|, if the implicit constants in (3.4) are uniform in bounded deterministic matrices
∥Bj∥ ≤ 1, deterministic vectors ∥x∥, ∥y∥ ≤ 1, and admissible spectral parameters zj ∈ D satisfying
1 ≥ η := minj |ℑzj |.

Moreover, we may allow for additional restrictions on the deterministic matrices. For example, we may
talk about uniformity under the additional assumption that some (or all) of the matrices are regular.

The following Lemma is one of the main results of the rotational project and is required for the proof of
Theorem 2.7.

Lemma 3.2 (Representation as full underlined). Assume that Ψav/iso
j ≺ ψ

av/iso
j holds for 1 ≤ j ≤ 4

uniformly in regular matrices. Then we have

(3.5)
〈
(G(z1)−M(z1))A

◦z1,z1
1

〉
= −

〈
WG(z1)A

′
1

〉
+O≺ (Eav

1 ) ,

(3.6)
(
G(z1)A

◦z1,z2
1 G(z2)−M

(
z1, A

◦z1,z2
1 , z2

))
xy

= −
(
G(z1)A

′
1WG(z2)

)
xy

+O≺
(
E iso
1

)
,

(3.7)〈(
G(z1)A

◦z1,z2
1 G(z2)−M(z1, A

◦z1,z2
1 , z2)

)
A

◦z2,z1
2

〉
= −

〈
WG(z1)A

◦z1,z2
1 G(z2)A

′
2

〉
+O≺ (Eav

2 ) ,

(3.8)
(
G(z1)A

◦z1,z2
1 G(z2)A

◦z2,z3
2 G(z3)−M

(
z1, A

◦z1,z2
1 , z2, A

◦z2,z3
2 , z3

))
xy

= −
(
G(z1)A

′
1WG(z2)A

◦z2,z3
2 G(z3)

)
xy

+O≺
(
E iso
2

)
,

where

Eav
1 =

1

N
√
η

(
1 +

ψav
1

Nη

)
,
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E iso
1 =

1√
Nη2

(
1 +

ψiso
1

Nη
+

ψav
1√
Nη

)
,

Eav
2 =

1

Nη

(
1 + ψav

1 +
(ψav

1 )2

Nη
+
ψav
2

Nη

)
,

E iso
2 =

1√
Nη3

(
1 + ψiso

1 +
ψiso
2

Nη
+
ψiso
1 ψav

1

Nη

)
.

and matrices A′
1, A

′
2 (which may be different for different ψav/iso

j ) are regular in the corresponding product
chains and depend linearly on the matrices participating in the LHS of (3.5) - (3.8).

In the two following subsections we prove (3.5) and (3.6), while the proof of (3.7) and (3.8) is ideologi-
cally analogous modulo technical details.

3.1. Proof of (3.5). For brevity we will sometimes omit the argument z1 in G = G(z1) and M = M(z1)
in this subsection. In the proof of (3.5) only regular parts with respect to the equal spectral parameters
appear, so one can forget for a moment about the characteristic function in Definition 2.4. The regularity
condition for A1 now reads as ⟨A1 ImM⟩ = 0.

Define the following one-body stability operator which acts on N ×N matrices:

B := 1−M(z1)⟨·⟩M(z1).

With this notation (3.3) can be rewritten as follows

(3.9) B [G−M ] = −MWG+M⟨G−M⟩(G−M).

Direct computation shows that B is invertible and gives the explicit formula for B−1:

(3.10) B−1 = 1 +
⟨·⟩

1− ⟨M2⟩
M2.

After inverting B in (3.9), multiplying the obtained identity by A1 and taking the trace we get

(3.11) ⟨(G−M)A1⟩ = −⟨B−1 [MWG]A1⟩+ ⟨G−M⟩⟨B−1 [M(G−M)]A1⟩
Now we want to throw the action of B−1 to the matrix A1. Note that for arbitrary N ×N matrices R1 and
R2 it holds that

⟨B−1 [R1]R2⟩ =
〈
B−1 [R1] (R

∗
2)

∗〉
=
〈
R1

((
B−1

)∗
[R∗

2]
)∗〉

= ⟨R1X11 [R2]⟩ ,

where X11[R] :=
((

B−1
)∗

[R∗]
)∗

is a linear operator on the space of N ×N matrices equipped with the
scalar product (R1, R2) := ⟨R1R

∗
2⟩. It is easy to find X11 explicitly:

X11[R] = R+
⟨MRM⟩
1− ⟨M2⟩

.

An important feature of X11 is that ∥X11[R]∥ ≲ 1 for (z1, z1)-regular R with ∥R∥ ≲ 1. From (3.11) it
follows that

⟨(G−M)A1⟩ = −⟨WG (X11 [A1]M)⟩+ ⟨G−M⟩⟨(G−M) (X11[A1]M)⟩.
Decompose X [A1]M into the regular part and a multiple of identity:

⟨(G−M)A1⟩ = −⟨WG (X11 [A1]M)
◦⟩+ ⟨G−M⟩⟨(G−M) (X11[A1]M)

◦⟩
+ φ (X11[A1]M)

(
⟨G−M⟩2 − ⟨WG⟩

)
.

(3.12)

Denote A′
1 := (X11 [A1]M)

◦. Our aim is to obtain (3.5) from (3.12) by estimating the second and the third
terms in the RHS of (3.12). From the usual averaged local law and the definition of ψav

1 it follows that

⟨G−M⟩⟨(G−M) (X11[A1]M)
◦⟩ = O≺

(
1

Nη
· ψav

1

N
√
η

)
.

Since z1 is in the spectral domain, the denominator of φ (X11[A1]M) is bounded away from zero and

|φ (X11[A1]M) | ≲ |⟨(X11[A1]M)ℑM⟩| =
∣∣⟨A1B−1 [MℑM ]⟩

∣∣ .
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Calculate B−1 [MℑM ] using (3.10) and (2.3):

B−1 [MℑM ] =
B−1

[
M2 −MM∗]

2i
=
M2 −MM∗

2i
+

1

2i

⟨M2 −MM∗⟩
1− ⟨M2⟩

M2

=
i

2

ℑM
η + ⟨ℑM⟩

+
1

2i

1− ⟨MM∗⟩
1− ⟨M2⟩

M2 =
i

2

ℑM
η + ⟨ℑM⟩

+O(η)M2,

(3.13)

where we also used that

MM∗ =
ℑM

η + ⟨ℑM⟩
and 1− ⟨MM∗⟩ = η

η + ⟨ℑM⟩
= O(η).

We get an upper bound for φ (X11[A1]M) by multiplying (3.13) by A1, taking trace and recalling that A1

is (z1, z1)-regular:

|φ (X11[A1]M) | ≲
∣∣∣∣ i2 ⟨A1ℑM⟩
η + ⟨ℑM⟩

+O(η)⟨A1M
2⟩
∣∣∣∣ = O(η).

It is left to deal with the term ⟨G−M⟩2 − ⟨WG⟩. We do this by rewriting the term in the following way:

⟨G−M⟩2 − ⟨WG⟩

= ⟨G−M⟩2 −
〈
− 1

M
(G−M) + ⟨G−M⟩(G−M) + ⟨G−M⟩M

〉
=

〈
(G−M)

(
1

M
− ⟨M⟩

)〉
.

So, the usual averaged local law implies that∣∣⟨G−M⟩2 − ⟨WG⟩
∣∣ ≺ 1

Nη
.

Collecting the obtained estimates of terms in (3.12) we get (3.5).

3.2. Proof of (3.6). We will use the shorthand notations Gj := G(zj), Mj := M(zj) for j = 1, 2.
Consider the product G1ÃG2 for an arbitrary N ×N matrix Ã and use (3.3) for G2:

(3.14) G1ÃG2 =M1ÃM2 + (G1 −M1) ÃM2 −G1ÃM2WG2 + ⟨G2 −M2⟩G1ÃM2G2.

Extend the underline on the entire third term:

(3.15) G1ÃM2WG2 = G1ÃM2WG2+EW̃

[
G1W̃G2ÃM2W̃G2

]
= G1ÃM2WG2+⟨G1ÃM2⟩G1G2.

Plugging (3.15) into (3.14) and rearranging the summands we get that

(3.16) G1

(
Ã− ⟨M1ÃM2⟩

)
G2

=M1ÃM2+(G1−M1)ÃM2−G1ÃM2WG2+⟨G2−M2⟩G1ÃM2G2+⟨(G1 −M1) ÃM2⟩G1G2.

Now for a (z1, z2)-regular matrix A we chose the matrix Ã in such a way that A = Ã − ⟨M1ÃM2⟩. Note
that such choice of Ã exists and is unique:

Ã = X12[A] := A+
⟨M1AM2⟩
1− ⟨M1M2⟩

.

Explicit formulas for X12 and M(z1, A, z2) give that M1X12[A]M2 = M(z1, A, z2). Decompose the
matrix X12[A]M2 in the last three terms in the RHS of (3.16) with respect to spectral parameters z1 and z2:

G1AG2 =M(z1, A, z2) + (G1 −M1)X12[A]M2 −G1 (X12[A]M2)
◦12 WG2

+ ⟨G2 −M2⟩G1 (X12[A]M2)
◦12 G2 +

〈
(G1 −M1) (X12[A]M2)

◦12
〉
G1G2

+ φ (z1,X12[A]M2, z2)
{
−G1WG2 + ⟨G2 −M2⟩G1G2 + ⟨G1 −M1⟩G1G2

}
.

(3.17)

The coefficient by φ (z1,X12[A]M2, z2) equals to

−G1 +G1

(
1

M2
− ⟨M1⟩

)
G2,
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this can be seen by expanding the underline in G1WG2 by definition. Denote Φ := M−1
2 − ⟨M1⟩. Easy

computation shows that M (z1,Φ, z2) =M1. This yields that the term {· · · } in (3.17) equals to

− (G1 −M1) + (G1ΦG2 −M(z1,Φ, z2))

= −(G1 −M1) + (G1Φ
◦12G2 −M ((z1,Φ

◦12 , z2)) + φ(z1,Φ, z2) (G1G2 −M(z1, I, z2)) .

Next we substitute A := Φ◦12 into (3.17), interpret the identity as a linear equation with unkown variable
G1Φ

◦12G2 − M(z1,Φ
◦12 , z2) and find this variable. By plugging the result into (3.17) and substituting

A := A1 we get the identity which is the starting point for estimating the error term in (3.6):

G1A1G2 −M(z1, A1, z2) = (G1 −M1)X12[A1]M2 −G1 (X12[A1]M2)
◦12 WG2

+ ⟨G2 −M2⟩G1 (X12[A1]M2)
◦12 G2 + ⟨(G1 −M1) (X12[A1]M2)

◦12⟩G1G2

+
φ (z1,X12[A1]M2, z2)

1− φ(z1,X12 [Φ◦12 ]M2, z2)

(
(G1 −M1)X12[Φ

◦12 ]M2

−G1 (X12[Φ
◦12 ]M2)

◦12 WG2 + ⟨G2 −M2⟩G1 (X12[Φ
◦12 ]M2)

◦12 G2

+ ⟨(G1 −M1) (X12[Φ
◦12 ]M2)

◦12⟩G1G2 − (G1 −M1) + φ (z1,Φ, z2) (G1G2 −M(z1, I, z2))

)
.

(3.18)

At first we need to show that 1− φ(z1,X12 [Φ
◦12 ]M2, z2) does not vanish.

Lemma 3.3. For small enough δ > 0 we have that∣∣∣∣ 1

1− φ(z1,X12 [Φ◦12 ]M2, z2)

∣∣∣∣ ≲ 1.

Proof of Lemma 3.3: If uδ(z1, z2) = 0, then 1−φ(...) = 1. Otherwise z1 ≈ z2 or z1 ≈ z̄2. In this regime
we only deal with the extreme case uδ = 1. For the intermediate case uδ ∈ (0, 1) some minor additional
ideas are required, however, we do not want to discuss them here. We consider two cases: when z1, z2 are
in different half-planes and when they are in the same one.
(1) ℑz1 · ℑz2 < 0. We compute the fraction which we need to estimate using the definitions of Φ, regular
part and X12:

(1− φ(z1,X12 [Φ
◦12 ]M2, z2))

−1
=

(
1− ⟨M1M2⟩

⟨M1M2⟩
+

⟨M1⟩
⟨M1M2⟩

· ⟨M1M2⟩
⟨M1M2

2 ⟩

)−1

=
⟨M1M2⟩2

⟨M1⟩⟨M1M2
2 ⟩

Since ⟨M1M2⟩2 ≲ 1 and |⟨M1⟩| ∼ 1, we only need to show that |⟨M1M
2
2 ⟩|−1 ≲ 1. The following

calculation establishes this inequality:

1

|⟨M1M2
2 ⟩|

=
|z1 − z2 + ⟨M1⟩ − ⟨M2⟩|

|⟨(M1 −M2)M2⟩|
≲

1

|⟨(M1 −M2)M2⟩|

=
1

|⟨(M1 −M∗
1 )M2⟩+ ⟨(M∗

1 −M2)M2⟩|

=
1

|⟨(M1 −M∗
1 )M

∗
1 ⟩+ ⟨(M1 −M∗

1 )(M2 −M∗
1 )⟩+ ⟨(M∗

1 −M2)M2⟩|

=
1

|2i⟨ℑM1 ·M∗
1 ⟩+ 2i⟨ℑM1 ·M ′(ζ1)(z2 − z̄1)⟩+ ⟨M ′(ζ2)(z̄1 − z2)M2⟩|

=
1∣∣∣2⟨(ℑM1)

2⟩+ 2i⟨ℑM1ℜM1⟩+O(|z1 − z̄2|)
∣∣∣

≲
1∣∣∣(⟨ℑM1)

2⟩
∣∣∣+O(|z1 − z̄2|)

≤ 1

⟨ℑM1⟩2 +O(|z1 − z̄2|)
≲ 1.
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(2) ℑz1 · ℑz2 > 0. In this case we can also compute that

1

1− φ(z1,X12 [Φ◦12 ]M2, z2)
=

⟨M1M
∗
2 ⟩2(1− ⟨M1M2⟩)

⟨M1M2M∗
2 ⟩(⟨M1⟩⟨M1M∗

2 ⟩ − ⟨M1M
−1
2 M∗

2 ⟩)

We give lower estimates of order 1 for each factor in the denominator:

|⟨M1M2M
∗
2 ⟩| =

∣∣〈M2
1M

∗
1

〉∣∣+O(|z1 − z2|) =
|⟨M1ℑM1⟩|
|η + ⟨ℑM1⟩|

+O(|z1 − z2|)

≳ |⟨M1ℑM1⟩|+O(|z1 − z2|) =
∣∣∣⟨ℜM1 · ℑM1⟩+ i

〈
(ℑM1)

2
〉∣∣∣+O(|z1 − z2|)

≥
∣∣∣⟨(ℑM1)

2⟩
∣∣∣+O(|z1 − z2|) ≥ ⟨ℑM1⟩2 +O(|z1 − z2|) ≳ 1.

And for the second factor:

|⟨M1⟩⟨M1M
∗
2 ⟩ − ⟨M1M2M

∗
2 ⟩| =

∣∣⟨M1⟩⟨M1M
∗
1 ⟩ −

〈
M1M

−1
1 M∗

1

〉∣∣+O(|z1 − z2|)
= |(⟨M1⟩ − ⟨M∗

1 ⟩) + ⟨M1⟩(⟨M1M
∗
1 ⟩ − 1)|+O(|z1 − z2|)

≳ |⟨ℑM1⟩| − |1− ⟨M1M
∗
1 ⟩|+O(|z1 − z2|) = |⟨ℑM1⟩|+O(η + |z1 − z2|) ≳ 1.

This finishes the proof of Lemma 3.3 in the second case. □
Next, we take scalar product of (3.18) with two deterministic vectors x,y satisfying ∥x∥, ∥y∥ ≤ 1. In

the resulting expression we need to discuss separately two terms:

(3.19)
(〈
(G1 −M1) (X12[Φ

◦12 ]M2)
◦12
〉
G1G2

)
xy

and

(3.20) (φ (z1,Φ, z2) (G1G2 −M(z1, I, z2)))xy .

Estimating (3.19). In the matrix product under the trace in (3.19) the matrix (X12[Φ
◦12 ]M2)

◦12 may not
be (z1, z1)-regular. However, the following continuity of regular part with respect to spectral parameters
holds:

Lemma 3.4. Let R be a deterministic matrix with ∥R∥ ≤ 1, z1, z2 are in the spectral domain, Ej = ℜzj ,
ηj = |ℑzj |, j = 1, 2. Then in holds that

R◦z1,z2 = R◦z1,z1 +O (|E1 − E2|+ |η1 − η2|) ,

where implicit constant in O does not depend on R, z1, z2, N , but may depend on δ.

The proof of Lemma 3.4 is an easy application of (2.3) and hence is omitted. This lemma gives that
(3.19) equals to

(3.21)
(〈

(G1 −M1) (X12[Φ
◦12 ]M2)

◦11
〉
+ ⟨G1 −M1⟩O (|E1 − E2|+ |η1 − η2|)

)
(G1G2)xy .

In the case ℑz1ℑz2 < 0 we use resolvent identity in order to estimate the second factor:∣∣∣(G1G2)xy

∣∣∣ = ∣∣∣∣ (G1)xy − (G2)xy
z1 − z2

∣∣∣∣ ≺ (1 + 1√
Nη1

+
1√
Nη2

)
· 1

|E1 − E2|+ η1 + η2

≲
1

|E1 − E2|+ η1 + η2
,

(3.22)

where we used usual isotropic local law. In the case ℑz1ℑz2 > 0 we employ the integral representation in
this term:

(G1G2)xy = (G(E1 + iη1)G(E2 + iη2))xy =
1

2πi

∫
R

(G(x+ iη/3))xy
(x+ iη/3− z1)(x+ iη/3− z2)

dx.
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Again by using the usual isotropic local law we get that∣∣∣(G1G2)xy

∣∣∣ ≺ (1 + 1√
Nη

)∫
R

dx

|x− E1 − i(η1 − η/3)| · |x− E2 − i(η2 − η/3)|

≺
(
1 +

1√
Nη

)
logN

|E1 − E2|+ η1 + η2
≺ 1

|E1 − E2|+ η1 + η2
.

(3.23)

where logN was absorbed by ≺. Now we use either (3.22) or (3.23) depending on sign of ℑz1ℑz2 in (3.21)
and get the estimate for (3.19):

|(3.19)| ≺
∣∣〈(G1 −M1) (X12[Φ

◦12 ]M2)
◦11
〉∣∣+ |⟨G1 −M1⟩|O(|E1 − E2|+ |η1 − η2|)

|E1 − E2|+ η1 + η2

≺ 1

|E1 − E2|+ η1 + η2
· ψav

1

N
√
η
+

1

Nη
≺ 1

Nη
+

1√
Nη

· ψav
1√
Nη

.

Estimating (3.20). We again distinguish between cases ℑz1ℑz2 < 0 and ℑz1ℑz2 > 0.
(1) ℑz1ℑz2 < 0. For the first factor in (3.20) we have

|φ(z1,Φ, z2)| =
∣∣∣∣ ⟨M1ΦM2⟩
⟨M1M2⟩

∣∣∣∣ = ∣∣∣∣ ⟨M1⟩ − ⟨M1⟩⟨M1M2⟩
⟨M1M2⟩

∣∣∣∣ ≲ |1− ⟨M1M2⟩|

=
|z1 − z2|

|⟨M1⟩ − ⟨M2⟩+ z1 − z2|
≲ |z1 − z2| = O(|E1 − E2|+ η1 + η2).

(3.24)

In the factor containingG1G2 we use resolvent identity and the corresponding property of the deterministic
approximation:∣∣∣(G1G2 −M(z1, I, z2))xy

∣∣∣ = ∣∣∣∣ (G1 −M1)xy − (G2 −M2)xy
z1 − z2

∣∣∣∣
≺
(

1√
Nη1

+
1√
Nη2

)
· 1

|E1 − E2|+ η1 + η2
≺ 1√

Nη
· 1

|E1 − E2|+ η1 + η2
.

(3.25)

Combining bounds (3.24) and (3.25) we get that |(3.20)| ≺ 1/
√
Nη.

(1) ℑz1ℑz2 > 0. Using integral representation forG1G2 and the same one forM(z1, I, z2) we get inequal-
ity (3.25) in the given case. This step is fully analogous to what was done during estimating (3.19). For
|φ(z1,Φ, z2)| we have an obvious upper estimate of order 1 and it is not possible to improve it. But (3.20)
comes with the factor φ(z1,X [B]M2, z2), which can be bounded is a nicer way (then just by constant) in
the current case:

|φ (z1,X [A1]M2, z2)| =
∣∣∣∣ ⟨M1X [A1]M2M

∗
2 ⟩

M1M∗
2

∣∣∣∣ ≲ |⟨M1X [A1]M2M
∗
2 ⟩|

=

∣∣∣∣⟨M1A1M2M
∗
2 ⟩+

⟨M1A1M2⟩
1− ⟨M1M2⟩

⟨M1M2M
∗
2 ⟩
∣∣∣∣

=

∣∣∣∣ 1

ℑz2 + ⟨ℑM2⟩

(
⟨M1A1ℑM2⟩+

⟨M1A1M2⟩
1− ⟨M1M2⟩

⟨M1ℑM2⟩
)∣∣∣∣

≲

∣∣∣∣ 12i
(
⟨M1A1M2⟩ − ⟨M1A1M

∗
2 ⟩+

⟨M1A1M2⟩
1− ⟨M1M2⟩

(⟨M1M2⟩ − ⟨M1M
∗
2 ⟩
)∣∣∣∣

≲

∣∣∣∣ ⟨M1A1M2⟩(1− ⟨M1M2⟩+ ⟨M1M2⟩ − ⟨M1M
∗
2 ⟩)

1− ⟨M1M2⟩

∣∣∣∣ ≲ |1− ⟨M1M
∗
2 ⟩|

≲ |z1 − z̄2| = O(|E1 − E2|+ η1 + η2).

Therefore,

|φ(z1,X [B]M2, z2) · (3.20)| ≺ 1√
Nη

.
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Collecting all bounds for the terms in (3.18) we get that (3.6) holds with:

A′
1 = (X12[A1]M2)

◦12 +
φ (z1,X12[A1]M2, z2)

1− φ(z1,X12 [Φ◦12 ]M2, z2)
(X12 [Φ

◦12 ]M2)
◦12 .

APPENDIX A. PROPERTIES OF THE DETERMINISTIC APPROXIMATION

Definition A.1. Let k ∈ N. A pair is a tuple p = (i, j), where i, j ∈ {1, . . . , k} and i < j. All sets of pairs
which we consider consist of pairwise distinct pairs (but some of pairs may have common elements). We
will use P to denote sets of pairs. Pk is the collection of all sets of pairs on the set {1, . . . , k}.

Consider P ∈ Pk. We will say that P is a non-crossing set of pairs if for all (i1, j1), (i2, j2) ∈ P such
that i1 < i2 < j1 it holds that i1 < j2 < j1. Denote the collection of all non-crossing sets of pairs on the
set {1, . . . , k} by Pnc

k .

Definition A.2. Consider P ∈ Pnc
k . The N ×N matrix MP (z1, A1, z2, . . . , zk) is defined in the following

way. We start with the product M1A1M2A2 . . . Ak−1Mk. For every (i, j) ∈ P we cross out of this
product the following part: AiMi+1 . . . Aj−1. Then MP (z1, A1, z2, . . . , zk) is the string obtained after all
"crossings" are completed.

Note that for each P ∈ Pnc
k the first factor of MP (z1, A1, z2, . . . , zk) is M1 and the last is Mk.

Definition A.3. Consider P ∈ Pnc
k and (i, j) ∈ P . Consider the product MiAiMi+1 . . .Mj . For all

(s, t) ∈ P such that i ≤ s < t ≤ j and (s, t) ̸= (i, j) we cross AsMs+1 . . . At−1 out of this product. Then
m̃

(i,j)
P (z1, A1, z2, . . . , zk) is the normalized trace of the obtained product. We also denote

m
(i,j)
P (z1, A1, z2, . . . , zk) :=

m̃
(i,j)
P (z1, A1, z2, . . . , zk)

1− ⟨MiMj⟩
and

mP (z1, A1, z2, . . . , zk) :=
∏

(i,j)∈P

m
(i,j)
P (z1, A1, z2, . . . , zk).

Theorem A.4.

(A.1) M(z1, A1, z2, . . . , zk) =
∑

P∈Pnc
k

mP (z1, A1, z2, . . . , zk)MP (z1, A1, z2, . . . , zk).

Proof of Theorem A.4: It is sufficient to check that

M̃(z1, A1, z2, . . . , zk) :=
∑

P∈Pnc
k

mPMP

satisfies recursive formula (2.7). We start with analyzing
〈
M̃(z1, A1, z2, . . . , zl)

〉
in terms of Pnc

l :〈
M̃(z1, A1, z2, . . . , zl)

〉
=

∑
P∈Pnc

l

mP ⟨MP ⟩ =
∑
1

mP ⟨MP ⟩+
∑
2

mP ⟨MP ⟩,

where the first sum goes over all non-crossing sets of pairs which do not contain the pair (1, l), and the
second over the rest of sets of non-crossing pairs. There is a natural bijection between this two sets: if P
belongs to the first group of indices, then P ∪ (1, l) is in the second group. Also each set from the second
group of indices is of the form P ∪ (1, l), where P is from the first group. Thus we have:〈

M̃(z1, A1, z2, . . . , zl)
〉
=
∑
1

(
mP ⟨MP ⟩+mP∪(1,l)

〈
MP∪(1,l)

〉)
.

Note that MP∪(1,l) =M1Ml. We also have that

mP∪(1,l) = mP
⟨MP ⟩

1− ⟨M1Ml⟩
.

Therefore,

mP ⟨MP ⟩+mP∪(1,l)⟨MP∪(1,l)⟩ = mP ⟨MP ⟩+mP
⟨MP ⟩

1− ⟨M1Ml⟩
⟨M1Ml⟩ =

mP ⟨MP ⟩
1− ⟨M1Ml⟩

,
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⟨M̃(z1, A1, z2, . . . , zl)⟩M1Ml =
∑

P∈Pnc
l ,(1,l)∈P

mPMP ,

M1A1M̃ (z2, A2, . . . , Ak−1, zk) =
∑

P∈P(1)

mPMP ,

where P(1) is the subset of Pnc
k consisting of all sets of pairs which do not contain 1;

⟨M̃(z1, A1, . . . , Aj−1, zj)⟩M1M̃(zj , Aj , . . . , Ak−1, zk) =
∑

P∈P(j)

mPMP ,

where P(j) is the collection of all non-crossing sets of pairs containing (1, j) and where (1, j) is the biggest
by inclusion of intervals pair which contains 1. Hence M̃ satisfies (2.7). □
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