## Rotation Project in Laszlo Erdős Group

## MULTI-RESOLVENT LOCAL LAWS FOR DEFORMED WIGNER MATRICES

OLEKSII KOLUPAIEV ${ }^{\dagger}$

## 1. Introduction

The rotation project was a part of a work on the equipartition principle for Wigner matrices done by the author in collaboration with Giorgio Cipolloni, Laszlo Erdős and Joscha Henheik. The results of this bigger project are presented in [2]. Most of the content of the current report can be found in [2, Section 4]. However, here we discuss the proof of Lemma 3.2 in more details and give an alternative description of $M$ in Appendix A .

It is well-known that resolvents of large random matrices are typically well approximated by their deterministic counterparts both in averaged and in isotropic sense. Such results are called local laws. Moreover, one can look at products of several resolvents and ask if they also tend to be deterministic when the size of a random matrix goes to infinity. It turns out that the answer is positive for Wigner matrices [4] and for Hermitization of matrices with independent identically distributed entries [3]. The main goal of the rotation project was to prove the similar result for deformed Wigner matrices by using the $\Psi$-approach from [4] and [3].

## 2. SET-UP AND MAIN RESULTS

### 2.1. Model.

Definition 2.1. Let $W$ be a real symmetric or complex Hermitian Wigner matrix, i.e. a matrix with independent entries up to the symmetry constraint satisfying $w_{a b}=N^{-1 / 2} \mathcal{X}_{o d}$, for $a>b$, and $w_{a a}=N^{-1 / 2} \mathcal{X}_{d}$. Let $D$ be a bounded deterministic matrix of the same size with the corresponding symmetry type. Then the matrix $H:=W+D$ is called a deformed Wigner matrix.

We will need to make the following technical assumption about $W$ :
Assumption 2.2. We assume that $\chi_{\mathrm{d}}$ is a real centered random variable, that $\chi_{\mathrm{od}}$ is a real or complex random variable such that $\mathbf{E} \chi_{\mathrm{od}}=0$ and $\mathbf{E}\left|\chi_{\mathrm{od}}\right|^{2}=1$; additionally in the complex case we also assume that $\mathbf{E} \chi_{\mathrm{od}}^{2}=0$. Furthermore, we assume that all the moments of $\chi_{\mathrm{od}}$ and $\chi_{\mathrm{d}}$ exist, i.e. for any $p \in \mathbf{N}$ there exists a constant $C_{p}>0$ such that

$$
\begin{equation*}
\mathbf{E}\left|\chi_{\mathrm{od}}\right|^{p}+\mathbf{E}\left|\chi_{\mathrm{d}}\right|^{p} \leq C_{p} . \tag{2.1}
\end{equation*}
$$

In the sequel deformation $D$ will be fixed but $N$-dependent and we will omit the dependence on $D$ in notations.
2.2. Notations and conventions. For positive quantities $f, g$ we write $f \lesssim g$ and $f \sim g$ if $f \leq C g$ or $c g \leq f \leq C g$, respectively, for some constants $c, C>0$ which depend only on the constants appearing in the moment condition, see (2.1).

We denote vectors by bold-faced lower case Roman letters $\boldsymbol{x}, \boldsymbol{y} \in \mathbf{C}^{N}$, for some $N \in \mathbf{N}$. Vector and matrix norms, $\|\boldsymbol{x}\|$ and $\|A\|$, indicate the usual Euclidean norm and the corresponding induced matrix norm. For any $N \times N$ matrix $A$ we use the notation $\langle A\rangle:=N^{-1} \operatorname{Tr} A$ to denote the normalized trace of $A$. Moreover, for vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbf{C}^{N}$ and matrices $A \in \mathbf{C}^{N \times N}$ we define the scalar product

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle:=\sum_{i=1}^{N} \bar{x}_{i} y_{i} .
$$

[^0]Finally, we will use the concept of "with very high probability" meaning that for any fixed $D>0$ the probability of an $N$-dependent event is bigger than $1-N^{-D}$ for $N \geq N_{0}(D)$. We introduce the notion of stochastic domination (see e.g. [5]): given two families of non-negative random variables

$$
X=\left(X^{(N)}(u): N \in \mathbf{N}, u \in U^{(N)}\right) \quad \text { and } \quad Y=\left(Y^{(N)}(u): N \in \mathbf{N}, u \in U^{(N)}\right)
$$

indexed by $N$ (and possibly some parameter $u$ in some parameter space $U^{(N)}$ ), we say that $X$ is stochastically dominated by $Y$, if for all $\xi, D>0$ we have

$$
\begin{equation*}
\sup _{u \in U^{(N)}} \mathbf{P}\left[X^{(N)}(u)>N^{\xi} Y^{(N)}(u)\right] \leq N^{-D} \tag{2.2}
\end{equation*}
$$

for large enough $N \geq N_{0}(\xi, D)$. In this case we use the notation $X \prec Y$ or $X=\mathcal{O}_{\prec}(|Y|)$. We also use the convention that $\xi>0$ denotes an arbitrary small constant which is independent of $N$.
2.3. Main results. Let $D$ be a self-adjoint $N \times N$ matrix, $z \in \mathbb{C} \backslash \mathbb{R}$. The matrix Dyson equation (MDE) for deformed Wigner matrices is defined as follows:

$$
\begin{equation*}
-\frac{1}{M(z)}=z-D+\langle M(z)\rangle \tag{2.3}
\end{equation*}
$$

It is known that MDE has a solution and for $z$ in the upper half-plane under assumption $\Im M(z)>0$ it is unique. In the sequel we will denote this solution by $M(z)=M^{D}(z)$. It turns out that $M(z)$ approximates the resolvent $G(z):=(H-z)^{-1}$ in the sense of the following local laws:

$$
\begin{align*}
|\langle(G(z)-M(z)) A\rangle| & \prec \frac{1}{N|\Im z|},  \tag{2.4}\\
|\langle\boldsymbol{x},(G(z)-M(z)) \boldsymbol{y}\rangle| & \prec \frac{1}{\sqrt{N|\Im z|}} \tag{2.5}
\end{align*}
$$

in the regime $|\Im z| \gg \frac{1}{N}$ for any bounded matrix $A$ and vectors $\boldsymbol{x}, \boldsymbol{y}$ (see e.g. [1]). Next we define the deterministic approximation of the product chains of the form

$$
\begin{equation*}
G\left(z_{1}\right) A_{1} G\left(z_{2}\right) A_{2} \cdots A_{k-1} G\left(z_{k}\right) \tag{2.6}
\end{equation*}
$$

where $z_{1}, z_{2}, \ldots, z_{k}$ are spectral parameters and matrices $A_{1}, A_{2}, \ldots, A_{k-1}$ are deterministic.
Definition 2.3. The $N \times N$ matrix $M\left(z_{1}, A_{1}, z_{2}, A_{2}, \ldots, A_{k-1}, z_{k}\right)$ which we call the deterministic approximation of the product (2.6) is the solution of the following recurrence relation:

$$
\begin{align*}
& M\left(z_{1}, A_{1}, \ldots, A_{k-1}, z_{k}\right)=M\left(z_{1}\right) A_{1} M\left(z_{2}, A_{2}, \ldots, A_{k-1}, z_{k}\right)+  \tag{2.7}\\
& \qquad \begin{array}{l}
+\sum_{j=2}^{k-1}\left\langle M\left(z_{1}, A_{1}, \ldots, A_{j-1}, z_{j}\right)\right\rangle M\left(z_{1}\right) M\left(z_{j}, A_{j}, \ldots, A_{k-1}, z_{k}\right)+ \\
\\
\quad+\left\langle M\left(z_{1}, A_{1}, \ldots, A_{k-1}, z_{k}\right)\right\rangle M\left(z_{1}\right) M\left(z_{2}\right)
\end{array}
\end{align*}
$$

In Appendix A we prove that 2.7) defines $M$ uniquely and give a more explicit description of the deterministic approximation. In particular, this description implies that $M$ satisfies another recurrence relation which will be used further in calculations:

$$
\begin{align*}
& M\left(z_{1}, A_{1}, \ldots, A_{k-1}, z_{k}\right)=M\left(z_{1}, A_{1} M\left(z_{2}\right) A_{2}, z_{3}, A_{3}, \ldots, A_{k-1}, z_{k}\right)+  \tag{2.8}\\
& \quad+\left\langle M\left(z_{1}\right) A_{1} M\left(z_{2}\right)\right\rangle M\left(z_{1}, I, z_{2}, A_{2}, z_{3}, A_{3}, \ldots, A_{k-1}, z_{k}\right)+ \\
& +\left\langle M\left(z_{2}, A_{2}, z_{3}\right)\right\rangle M\left(z_{1}, A_{1} M\left(z_{2}\right), z_{3}, A_{3}, \ldots, A_{k-1}, z_{k}\right)+\cdots+ \\
& \quad+\left\langle M\left(z_{2}, A_{2}, z_{3}, \ldots, A_{k-1}, z_{k}\right)\right\rangle M\left(z_{1}, A_{1} M\left(z_{2}\right), z_{k}\right)
\end{align*}
$$

Our goal is to estimate the difference

$$
G\left(z_{1}\right) A_{1} G\left(z_{2}\right) A_{2} \cdots A_{k-1} G\left(z_{k}\right)-M\left(z_{1}, A_{1}, z_{2}, A_{2}, \ldots, A_{k-1}, z_{k}\right)
$$

both in averaged and in isotropic sense. Note that in Wigner case this fluctuation becomes much smaller if some of the matrices $A_{j}$ are traceless. A similar phenomenon is observed also for deformed Wigner matrices, but the condition on $A_{j}$ which replaces tracelessness depends on a place of $A_{j}$ in the product
chain. More precisely, it depends on $z_{j}$ and $z_{j+1}$. This leads us to the definition of regular observable (we sometimes refer to deterministic matrices $A_{j}$ as to observables because of the application of local laws to the eigenstate thermalization hypothesis).

Definition 2.4 (Regular observables). Regular part of $A$ with respect to spectral parameters $z_{1}, z_{2} \in \mathbb{C} \backslash \mathbb{R}$ :

$$
A^{\circ_{z_{1}, z_{2}}}:=A-\varphi\left(z_{1}, A, z_{2}\right) \cdot I
$$

where

$$
\begin{gather*}
\varphi\left(z_{1}, A, z_{2}\right)=u_{\delta}\left(z_{1}, z_{2}\right) \frac{\left\langle M\left(E_{1}+i \Im z_{1}\right) A M\left(E_{2}+i \sigma \Im z_{2}\right)\right\rangle}{\left\langle M\left(E_{1}+i \Im z_{1}\right) M\left(E_{2}+i \sigma \Im z_{2}\right)\right\rangle},  \tag{2.9}\\
u_{\delta}\left(z_{1}, z_{2}\right)=u_{\delta}\left(E_{1}-E_{2}\right) u_{\delta}\left(\Im z_{1}\right) u_{\delta}\left(\Im z_{2}\right),
\end{gather*}
$$

where $u_{\delta}$ is a smooth cut-off function with $\operatorname{supp}(u) \subset[-2 \delta, 2 \delta], u_{\delta}(x)=1, x \in[\delta, \delta]$ and $\sigma=$ $-\operatorname{sign}\left(\Im z_{1} \Im z_{2}\right)$. Fixed parameter $\delta>0$ is $N$-independent and will be chosen later.

We will say that matrix $B$ is regular with respect to spectral parameters $z_{1}$ and $z_{2}$ if $B^{\circ_{z_{1}, z_{2}}}=B$.
Definition 2.5 (Spectral domain). Let $\rho$ be the self-consistent density of states corresponding to (2.3). Fix (small) $\kappa, \varepsilon>0$. The $(\kappa, \varepsilon)$-spectral domain is the following $N$-dependent set in the complex plane:

$$
\boldsymbol{D}_{(\kappa, \varepsilon)}:=\left\{z=E+i \eta \in \mathbb{C}: E \in \operatorname{supp}(\rho), \operatorname{dist}(E, \partial \operatorname{supp}(\rho))>\kappa, N^{-1+\varepsilon}<|\eta|<N^{100}\right\} .
$$

Remark 2.6. (1) We will refer to $\boldsymbol{D}_{(\kappa, \varepsilon)}$ as to the spectral domain omitting the dependence on $\kappa$ and $\varepsilon$.
(2) Further the control parameter $\eta$ will be the minimum of absolute values of imaginary parts of spectral parameters participating in the formula.
Note that $\left\|A^{\circ z_{1}, z_{2}}\right\| \lesssim 1$, when $z_{1}, z_{2}$ are in the spectral domain and $\|A\| \lesssim 1$. Now we can formulate our main result.

Theorem 2.7 (Multi-resolvent local laws with 1 and 2 observables). For spectral parameters in the spectral domain and for bounded observables it holds that
1.1) 1-G averaged local law:

$$
\left|\left\langle(G(z)-M(z)) A^{\circ_{z, z}}\right\rangle\right| \prec \frac{1}{N \sqrt{\eta}},
$$

1.2) 2-G isotropic local law:

$$
\left|\left\langle\boldsymbol{x},\left(G\left(z_{1}\right) A^{\circ_{z_{1}}, z_{2}} G\left(z_{2}\right)-M\left(z_{1}, A^{\circ_{z_{1}, z_{2}}}, z_{2}\right)\right) \boldsymbol{y}\right\rangle\right| \prec \frac{1}{\sqrt{N \eta^{2}}}
$$

2.1) 2-G averaged local law:

$$
\left|\left\langle\left(G\left(z_{1}\right) A_{1}^{\circ_{z_{1}, z_{2}}} G\left(z_{2}\right)-M\left(z_{1}, A_{1}^{\circ_{1}, z_{2}}, z_{2}\right)\right) A_{2}^{\circ_{z_{2}, z_{1}}}\right\rangle\right| \prec \frac{1}{N \eta}
$$

2.2) 3-G isotropic local law:

$$
\left|\left\langle\boldsymbol{x},\left(G\left(z_{1}\right) A_{1}^{\circ_{z_{1}}, z_{2}} G\left(z_{2}\right) A_{2}^{\circ_{z_{2}}, z_{3}} G\left(z_{3}\right)-M\left(z_{1}, A_{1}^{\circ_{z_{1}, z_{2}}}, z_{2}, A_{2}^{\circ_{z_{2}}, z_{3}}, z_{3}\right)\right) \boldsymbol{y}\right\rangle\right| \prec \frac{1}{\sqrt{N \eta^{3}}}
$$

We do not present the entire proof of Theorem 2.7, but focus on one of its main ideas (Lemma 3.2) in the following section. For the complete proof we refer to [2, Section 6].

Theorem 2.7 can be used to establish the Eigenstate Thermalization Hypothesis (ETH) for deformed Wigner matrices (see [2, Theorem 2.6]), which roughly speaking states that any observable becomes essentially diagonal in the eigenbasis of a deformed Wigner matrix and gives quantitative estimates for this phenomenon. This, in turn, implies after some argument the equipartition principle for Wigner matrices [2, Theorem 2.2], which in the simplest setting means that for Wigner matrices $W_{1}$ and $W_{2}$ and the eigenbasis $\left\{\boldsymbol{u}_{j}\right\}_{j=1}^{N}$ of $H:=W_{1}+W_{2}$ the energy $\lambda_{j}=\left\langle\boldsymbol{u}_{j}, H \boldsymbol{u}_{j}\right\rangle$ is equally shared between the summands:

$$
\left\langle\boldsymbol{u}_{j}, W_{1} \boldsymbol{u}_{j}\right\rangle \approx \frac{\lambda_{j}}{2} \approx\left\langle\boldsymbol{u}_{j}, W_{2} \boldsymbol{u}_{j}\right\rangle .
$$

Theorem 2.2 from [2] also gives quantative estimates for fluctuations of $\left\langle\boldsymbol{u}_{j}, W_{k} \boldsymbol{u}_{j}\right\rangle, k=1,2$, around $\lambda_{j} / 2$.

## 3. Main technical lemma

In order to estimate the differences in Theorem 2.7 we introduce the following control quantities:

$$
\begin{align*}
\Psi_{k}^{\mathrm{av}}\left(\boldsymbol{z}_{k}, \boldsymbol{A}_{k}\right) & :=N \eta^{k / 2}\left|\left\langle G_{1} A_{1} \cdots G_{k} A_{k}-M\left(z_{1}, A_{1}, \ldots, z_{k}\right) A_{k}\right\rangle\right|  \tag{3.1}\\
\Psi_{k}^{\mathrm{iso}}\left(\boldsymbol{z}_{k+1}, \boldsymbol{A}_{k}, \boldsymbol{x}, \boldsymbol{y}\right) & :=\sqrt{N \eta^{k+1}}\left|\left(G_{1} A_{1} \cdots A_{k} G_{k+1}-M\left(z_{1}, A_{1}, \ldots, A_{k}, z_{k+1}\right)\right)_{\boldsymbol{x} \boldsymbol{y}}\right| \tag{3.2}
\end{align*}
$$

for $k \in \mathbf{N}$, where we used the short hand notations

$$
G_{i}:=G\left(z_{i}\right), \quad \eta:=\min _{i}\left|\Im z_{i}\right|, \quad \boldsymbol{z}_{k}:=\left(z_{1}, \ldots, z_{k}\right), \quad \boldsymbol{A}_{k}:=\left(A_{1}, \ldots, A_{k}\right) .
$$

The deterministic matrices $\left\|A_{i}\right\| \leq 1, i \in[k]$, are assumed to be regular. For convenience, we extend the above definitions to $k=0$ by

$$
\Psi_{0}^{\text {av }}(z):=N \eta|\langle G(z)-M(z)\rangle|, \quad \Psi_{0}^{\text {iso }}(z, \boldsymbol{x}, \boldsymbol{y}):=\sqrt{N \eta}\left|(G(z)-M(z))_{\boldsymbol{x} \boldsymbol{y}}\right| .
$$

We will also use the definition of the second order renormalization, denoted by underline, from [3]. For a function $f(W)$ of the Wigner matrix $W$, we define

$$
\underline{W f(W)}:=W f(W)-\tilde{\mathbb{E}}\left[\tilde{W}\left(\partial_{\tilde{W}} f\right)(W)\right],
$$

where $\partial_{\tilde{W}}$ denotes the directional derivative in the direction of $\tilde{W}$, which is a GUE/GOE matrix (depending on the symmetry class of $W$ ) that is independent of $W$. The expectation is taken w.r.t. the matrix $\tilde{W}$. Normally $W f(W)$ is much smaller then $W f(W)$ in the sense of stochastic domination. We will often use the following representation of resolvent:

$$
\begin{equation*}
G=M-M \underline{W G}+M\langle G-M\rangle G \tag{3.3}
\end{equation*}
$$

Definition 3.1 (Uniform bounds in the spectral domain). For a fixed $k \in \mathbf{N}$ we say that the bounds

$$
\begin{aligned}
\left|\left\langle G\left(z_{1}\right) B_{1} \cdots G\left(z_{k}\right) B_{k}-M\left(z_{1}, B_{1}, \ldots, z_{k}\right) B_{k}\right\rangle\right| & \prec \mathcal{E}^{\text {av }}, \\
\left|\left(G\left(z_{1}\right) B_{1} \cdots B_{k} G\left(z_{k+1}\right)-M\left(z_{1}, B_{1}, \ldots, B_{k}, z_{k+1}\right)\right)_{x y}\right| & \prec \mathcal{E}^{\text {iso }}
\end{aligned}
$$

hold uniformly for some deterministic control parameters $\mathcal{E}^{\text {av/iso }}=\mathcal{E}^{\text {av/iso }}(N, \eta)$, depending only on $N$ and $\eta:=\min _{i}\left|\Im z_{i}\right|$, if the implicit constants in (3.4) are uniform in bounded deterministic matrices $\left\|B_{j}\right\| \leq 1$, deterministic vectors $\|\boldsymbol{x}\|,\|\boldsymbol{y}\| \leq 1$, and admissible spectral parameters $z_{j} \in \mathbf{D}$ satisfying $1 \geq \eta:=\min _{j}\left|\Im z_{j}\right|$.

Moreover, we may allow for additional restrictions on the deterministic matrices. For example, we may talk about uniformity under the additional assumption that some (or all) of the matrices are regular.

The following Lemma is one of the main results of the rotational project and is required for the proof of Theorem 2.7
Lemma 3.2 (Representation as full underlined). Assume that $\Psi_{j}^{\text {av/iso }} \prec \psi_{j}^{\text {av/iso }}$ holds for $1 \leq j \leq 4$ uniformly in regular matrices. Then we have

$$
\left\langle\left(G\left(z_{1}\right) A_{1}^{\circ_{1}, z_{2}} G\left(z_{2}\right)-M\left(z_{1}, A_{1}^{\circ_{z_{1}, z_{2}}}, z_{2}\right)\right) A_{2}^{\circ_{z_{2}, z_{1}}}\right\rangle=-\left\langle\underline{W G\left(z_{1}\right) A_{1}^{\circ_{z_{1}, z_{2}}} G\left(z_{2}\right) A_{2}^{\prime}}\right\rangle+\mathcal{O}_{\prec}\left(\mathcal{E}_{2}^{\mathrm{av}}\right)
$$

$$
\begin{align*}
\left(G\left(z_{1}\right) A_{1}^{\circ_{z_{1}, z_{2}}} G\left(z_{2}\right) A_{2}^{\circ_{z_{2}, z_{3}}} G\left(z_{3}\right)-\right. & M  \tag{3.8}\\
& \left.\left(z_{1}, A_{1}^{\circ_{z_{1}, z_{2}}}, z_{2}, A_{2}^{\circ_{z_{2}}, z_{3}}, z_{3}\right)\right)_{x y} \\
= & -\left(\underline{G\left(z_{1}\right) A_{1}^{\prime} W G\left(z_{2}\right) A_{2}^{\circ_{z_{2}}, z_{3}} G\left(z_{3}\right)}\right)_{x y}+\mathcal{O}_{\prec}\left(\mathcal{E}_{2}^{\mathrm{iso}}\right)
\end{align*}
$$

where

$$
\mathcal{E}_{1}^{\mathrm{av}}=\frac{1}{N \sqrt{\eta}}\left(1+\frac{\psi_{1}^{\mathrm{av}}}{N \eta}\right)
$$

$$
\begin{gathered}
\mathcal{E}_{1}^{\mathrm{iso}}=\frac{1}{\sqrt{N \eta^{2}}}\left(1+\frac{\psi_{1}^{\mathrm{iso}}}{N \eta}+\frac{\psi_{1}^{\mathrm{av}}}{\sqrt{N \eta}}\right), \\
\mathcal{E}_{2}^{\mathrm{av}}=\frac{1}{N \eta}\left(1+\psi_{1}^{\mathrm{av}}+\frac{\left(\psi_{1}^{\mathrm{av}}\right)^{2}}{N \eta}+\frac{\psi_{2}^{\mathrm{av}}}{N \eta}\right), \\
\mathcal{E}_{2}^{\mathrm{iso}}=\frac{1}{\sqrt{N \eta^{3}}}\left(1+\psi_{1}^{\mathrm{iso}}+\frac{\psi_{2}^{\mathrm{iso}}}{N \eta}+\frac{\psi_{1}^{\mathrm{iso}} \psi_{1}^{\mathrm{av}}}{N \eta}\right) .
\end{gathered}
$$

and matrices $A_{1}^{\prime}, A_{2}^{\prime}$ (which may be different for different $\psi_{j}^{\text {av/iso }}$ ) are regular in the corresponding product chains and depend linearly on the matrices participating in the LHS of 3.5) - 3.8.

In the two following subsections we prove (3.5) and (3.6), while the proof of (3.7) and (3.8) is ideologically analogous modulo technical details.
3.1. Proof of 3.5). For brevity we will sometimes omit the argument $z_{1}$ in $G=G\left(z_{1}\right)$ and $M=M\left(z_{1}\right)$ in this subsection. In the proof of (3.5) only regular parts with respect to the equal spectral parameters appear, so one can forget for a moment about the characteristic function in Definition 2.4. The regularity condition for $A_{1}$ now reads as $\left\langle A_{1} \operatorname{Im} M\right\rangle=0$.

Define the following one-body stability operator which acts on $N \times N$ matrices:

$$
\mathcal{B}:=1-M\left(z_{1}\right)\langle\cdot\rangle M\left(z_{1}\right) .
$$

With this notation (3.3) can be rewritten as follows

$$
\begin{equation*}
\mathcal{B}[G-M]=-M \underline{W G}+M\langle G-M\rangle(G-M) . \tag{3.9}
\end{equation*}
$$

Direct computation shows that $\mathcal{B}$ is invertible and gives the explicit formula for $\mathcal{B}^{-1}$ :

$$
\begin{equation*}
\mathcal{B}^{-1}=1+\frac{\langle\cdot\rangle}{1-\left\langle M^{2}\right\rangle} M^{2} \tag{3.10}
\end{equation*}
$$

After inverting $\mathcal{B}$ in $\sqrt{3.9}$, multiplying the obtained identity by $A_{1}$ and taking the trace we get

$$
\begin{equation*}
\left\langle(G-M) A_{1}\right\rangle=-\left\langle\mathcal{B}^{-1}[M \underline{W G}] A_{1}\right\rangle+\langle G-M\rangle\left\langle\mathcal{B}^{-1}[M(G-M)] A_{1}\right\rangle \tag{3.11}
\end{equation*}
$$

Now we want to throw the action of $\mathcal{B}^{-1}$ to the matrix $A_{1}$. Note that for arbitrary $N \times N$ matrices $R_{1}$ and $R_{2}$ it holds that

$$
\left\langle\mathcal{B}^{-1}\left[R_{1}\right] R_{2}\right\rangle=\left\langle\mathcal{B}^{-1}\left[R_{1}\right]\left(R_{2}^{*}\right)^{*}\right\rangle=\left\langle R_{1}\left(\left(\mathcal{B}^{-1}\right)^{*}\left[R_{2}^{*}\right]\right)^{*}\right\rangle=\left\langle R_{1} \mathcal{X}_{11}\left[R_{2}\right]\right\rangle,
$$

where $\mathcal{X}_{11}[R]:=\left(\left(\mathcal{B}^{-1}\right)^{*}\left[R^{*}\right]\right)^{*}$ is a linear operator on the space of $N \times N$ matrices equipped with the scalar product $\left(R_{1}, R_{2}\right):=\left\langle R_{1} R_{2}^{*}\right\rangle$. It is easy to find $\mathcal{X}_{11}$ explicitly:

$$
\mathcal{X}_{11}[R]=R+\frac{\langle M R M\rangle}{1-\left\langle M^{2}\right\rangle} .
$$

An important feature of $\mathcal{X}_{11}$ is that $\left\|\mathcal{X}_{11}[R]\right\| \lesssim 1$ for $\left(z_{1}, z_{1}\right)$-regular $R$ with $\|R\| \lesssim 1$. From (3.11) it follows that

$$
\left\langle(G-M) A_{1}\right\rangle=-\left\langle\underline{W G}\left(\mathcal{X}_{11}\left[A_{1}\right] M\right)\right\rangle+\langle G-M\rangle\left\langle(G-M)\left(\mathcal{X}_{11}\left[A_{1}\right] M\right)\right\rangle .
$$

Decompose $\mathcal{X}\left[A_{1}\right] M$ into the regular part and a multiple of identity:

$$
\begin{align*}
& \left\langle(G-M) A_{1}\right\rangle=-\left\langle\underline{W G}\left(\mathcal{X}_{11}\left[A_{1}\right] M\right)^{\circ}\right\rangle+\langle G-M\rangle\left\langle(G-M)\left(\mathcal{X}_{11}\left[A_{1}\right] M\right)^{\circ}\right\rangle \\
& \quad+\varphi\left(\mathcal{X}_{11}\left[A_{1}\right] M\right)\left(\langle G-M\rangle^{2}-\langle\underline{W G}\rangle\right) \tag{3.12}
\end{align*}
$$

Denote $A_{1}^{\prime}:=\left(\mathcal{X}_{11}\left[A_{1}\right] M\right)^{\circ}$. Our aim is to obtain (3.5) from 3.12) by estimating the second and the third terms in the RHS of 3.12). From the usual averaged local law and the definition of $\psi_{1}^{\text {av }}$ it follows that

$$
\langle G-M\rangle\left\langle(G-M)\left(\mathcal{X}_{11}\left[A_{1}\right] M\right)^{\circ}\right\rangle=\mathcal{O}_{\prec}\left(\frac{1}{N \eta} \cdot \frac{\psi_{1}^{\mathrm{av}}}{N \sqrt{\eta}}\right) .
$$

Since $z_{1}$ is in the spectral domain, the denominator of $\varphi\left(\mathcal{X}_{11}\left[A_{1}\right] M\right)$ is bounded away from zero and

$$
\left|\varphi\left(\mathcal{X}_{11}\left[A_{1}\right] M\right)\right| \lesssim\left|\left\langle\left(\mathcal{X}_{11}\left[A_{1}\right] M\right) \Im M\right\rangle\right|=\left|\left\langle A_{1} \mathcal{B}^{-1}[M \Im M]\right\rangle\right| .
$$

Calculate $\mathcal{B}^{-1}[M \Im M]$ using (3.10) and (2.3):

$$
\begin{gather*}
\mathcal{B}^{-1}[M \Im M]=\frac{\mathcal{B}^{-1}\left[M^{2}-M M^{*}\right]}{2 i}=\frac{M^{2}-M M^{*}}{2 i}+\frac{1}{2 i} \frac{\left\langle M^{2}-M M^{*}\right\rangle}{1-\left\langle M^{2}\right\rangle} M^{2}  \tag{3.13}\\
=\frac{i}{2} \frac{\Im M}{\eta+\langle\Im M\rangle}+\frac{1}{2 i} \frac{1-\left\langle M M^{*}\right\rangle}{1-\left\langle M^{2}\right\rangle} M^{2}=\frac{i}{2} \frac{\Im M}{\eta+\langle\Im M\rangle}+\mathcal{O}(\eta) M^{2}
\end{gather*}
$$

where we also used that

$$
M M^{*}=\frac{\Im M}{\eta+\langle\Im M\rangle} \quad \text { and } \quad 1-\left\langle M M^{*}\right\rangle=\frac{\eta}{\eta+\langle\Im M\rangle}=\mathcal{O}(\eta)
$$

We get an upper bound for $\varphi\left(\mathcal{X}_{11}\left[A_{1}\right] M\right)$ by multiplying (3.13) by $A_{1}$, taking trace and recalling that $A_{1}$ is $\left(z_{1}, z_{1}\right)$-regular:

$$
\left|\varphi\left(\mathcal{X}_{11}\left[A_{1}\right] M\right)\right| \lesssim\left|\frac{i}{2} \frac{\left\langle A_{1} \Im M\right\rangle}{\eta+\langle\Im M\rangle}+\mathcal{O}(\eta)\left\langle A_{1} M^{2}\right\rangle\right|=\mathcal{O}(\eta)
$$

It is left to deal with the term $\langle G-M\rangle^{2}-\langle\underline{W G}\rangle$. We do this by rewriting the term in the following way:
$\langle G-M\rangle^{2}-\langle\underline{W G}\rangle$
$=\langle G-M\rangle^{2}-\left\langle-\frac{1}{M}(G-M)+\langle G-M\rangle(G-M)+\langle G-M\rangle M\right\rangle=\left\langle(G-M)\left(\frac{1}{M}-\langle M\rangle\right)\right\rangle$.
So, the usual averaged local law implies that

$$
\left|\langle G-M\rangle^{2}-\langle\underline{W G}\rangle\right| \prec \frac{1}{N \eta} .
$$

Collecting the obtained estimates of terms in (3.12) we get (3.5).
3.2. Proof of 3.6). We will use the shorthand notations $G_{j}:=G\left(z_{j}\right), M_{j}:=M\left(z_{j}\right)$ for $j=1,2$. Consider the product $G_{1} \tilde{A} G_{2}$ for an arbitrary $N \times N$ matrix $\tilde{A}$ and use (3.3) for $G_{2}$ :

$$
\begin{equation*}
G_{1} \tilde{A} G_{2}=M_{1} \tilde{A} M_{2}+\left(G_{1}-M_{1}\right) \tilde{A} M_{2}-G_{1} \tilde{A} M_{2} \underline{W G_{2}}+\left\langle G_{2}-M_{2}\right\rangle G_{1} \tilde{A} M_{2} G_{2} \tag{3.14}
\end{equation*}
$$

Extend the underline on the entire third term:
(3.15) $\underline{G_{1} \tilde{A} M_{2} W G_{2}}=G_{1} \tilde{A} M_{2} \underline{W G_{2}}+\mathbb{E}_{\tilde{W}}\left[G_{1} \tilde{W} G_{2} \tilde{A} M_{2} \tilde{W} G_{2}\right]=G_{1} \tilde{A} M_{2} \underline{W G_{2}}+\left\langle G_{1} \tilde{A} M_{2}\right\rangle G_{1} G_{2}$. Plugging (3.15) into (3.14) and rearranging the summands we get that
(3.16) $G_{1}\left(\tilde{A}-\left\langle M_{1} \tilde{A} M_{2}\right\rangle\right) G_{2}$

$$
=M_{1} \tilde{A} M_{2}+\left(G_{1}-M_{1}\right) \tilde{A} M_{2}-\underline{G_{1} \tilde{A} M_{2} W G_{2}}+\left\langle G_{2}-M_{2}\right\rangle G_{1} \tilde{A} M_{2} G_{2}+\left\langle\left(G_{1}-M_{1}\right) \tilde{A} M_{2}\right\rangle G_{1} G_{2}
$$

Now for a $\left(z_{1}, z_{2}\right)$-regular matrix $A$ we chose the matrix $\tilde{A}$ in such a way that $A=\tilde{A}-\left\langle M_{1} \tilde{A} M_{2}\right\rangle$. Note that such choice of $\tilde{A}$ exists and is unique:

$$
\tilde{A}=\mathcal{X}_{12}[A]:=A+\frac{\left\langle M_{1} A M_{2}\right\rangle}{1-\left\langle M_{1} M_{2}\right\rangle}
$$

Explicit formulas for $\mathcal{X}_{12}$ and $M\left(z_{1}, A, z_{2}\right)$ give that $M_{1} \mathcal{X}_{12}[A] M_{2}=M\left(z_{1}, A, z_{2}\right)$. Decompose the matrix $\mathcal{X}_{12}[A] M_{2}$ in the last three terms in the RHS of (3.16) with respect to spectral parameters $z_{1}$ and $z_{2}$ :

$$
\begin{align*}
& G_{1} A G_{2}=M\left(z_{1}, A, z_{2}\right)+\left(G_{1}-M_{1}\right) \mathcal{X}_{12}[A] M_{2}-\underline{G_{1}\left(\mathcal{X}_{12}[A] M_{2}\right)^{0_{12}} W G_{2}} \\
& \quad+\left\langle G_{2}-M_{2}\right\rangle G_{1}\left(\mathcal{X}_{12}[A] M_{2}\right)^{0_{12}} G_{2}+\left\langle\left(G_{1}-M_{1}\right)\left(\mathcal{X}_{12}[A] M_{2}\right)^{\circ_{12}}\right\rangle G_{1} G_{2}  \tag{3.17}\\
& \quad+\varphi\left(z_{1}, \mathcal{X}_{12}[A] M_{2}, z_{2}\right)\left\{-\underline{G_{1} W G_{2}}+\left\langle G_{2}-M_{2}\right\rangle G_{1} G_{2}+\left\langle G_{1}-M_{1}\right\rangle G_{1} G_{2}\right\}
\end{align*}
$$

The coefficient by $\varphi\left(z_{1}, \mathcal{X}_{12}[A] M_{2}, z_{2}\right)$ equals to

$$
-G_{1}+G_{1}\left(\frac{1}{M_{2}}-\left\langle M_{1}\right\rangle\right) G_{2}
$$

this can be seen by expanding the underline in $G_{1} W G_{2}$ by definition. Denote $\Phi:=M_{2}^{-1}-\left\langle M_{1}\right\rangle$. Easy computation shows that $M\left(z_{1}, \Phi, z_{2}\right)=M_{1}$. This yields that the term $\{\cdots\}$ in (3.17) equals to

$$
\begin{aligned}
& -\left(G_{1}-M_{1}\right)+\left(G_{1} \Phi G_{2}-M\left(z_{1}, \Phi, z_{2}\right)\right) \\
& \quad=-\left(G_{1}-M_{1}\right)+\left(G_{1} \Phi^{\mathrm{o}^{12}} G_{2}-M\left(\left(z_{1}, \Phi^{\mathrm{O}_{12}}, z_{2}\right)\right)+\varphi\left(z_{1}, \Phi, z_{2}\right)\left(G_{1} G_{2}-M\left(z_{1}, I, z_{2}\right)\right)\right.
\end{aligned}
$$

Next we substitute $A:=\Phi^{{ }^{12}}$ into (3.17), interpret the identity as a linear equation with unkown variable $G_{1} \Phi^{{ }^{12}} G_{2}-M\left(z_{1}, \Phi^{{ }^{12}}, z_{2}\right)$ and find this variable. By plugging the result into (3.17) and substituting $A:=A_{1}$ we get the identity which is the starting point for estimating the error term in (3.6):

$$
\begin{align*}
& G_{1} A_{1} G_{2}-M\left(z_{1}, A_{1}, z_{2}\right)=\left(G_{1}-M_{1}\right) \mathcal{X}_{12}\left[A_{1}\right] M_{2}-\underline{G_{1}\left(\mathcal{X}_{12}\left[A_{1}\right] M_{2}\right)^{\circ_{12}} W G_{2}}  \tag{3.18}\\
& \quad+\left\langle G_{2}-M_{2}\right\rangle G_{1}\left(\mathcal{X}_{12}\left[A_{1}\right] M_{2}\right)^{\circ_{12}} G_{2}+\left\langle\left(G_{1}-M_{1}\right)\left(\mathcal{X}_{12}\left[A_{1}\right] M_{2}\right)^{\circ_{12}}\right\rangle G_{1} G_{2} \\
& \quad+\frac{\varphi\left(z_{1}, \mathcal{X}_{12}\left[A_{1}\right] M_{2}, z_{2}\right)}{1-\varphi\left(z_{1}, \mathcal{X}_{12}\left[\Phi^{\circ_{12}}\right] M_{2}, z_{2}\right)}\left(\left(G_{1}-M_{1}\right) \mathcal{X}_{12}\left[\Phi^{\circ_{12}}\right] M_{2}\right. \\
& \quad-\underline{G_{1}\left(\mathcal{X}_{12}\left[\Phi^{\circ_{12}}\right] M_{2}\right)^{\circ_{12}} W G_{2}}+\left\langle G_{2}-M_{2}\right\rangle G_{1}\left(\mathcal{X}_{12}\left[\Phi^{\circ_{12}}\right] M_{2}\right)^{\circ_{12}} G_{2} \\
& \left.\quad+\left\langle\left(G_{1}-M_{1}\right)\left(\mathcal{X}_{12}\left[\Phi^{\circ_{12}}\right] M_{2}\right)^{\circ_{12}}\right\rangle G_{1} G_{2}-\left(G_{1}-M_{1}\right)+\varphi\left(z_{1}, \Phi, z_{2}\right)\left(G_{1} G_{2}-M\left(z_{1}, I, z_{2}\right)\right)\right)
\end{align*}
$$

At first we need to show that $1-\varphi\left(z_{1}, \mathcal{X}_{12}\left[\Phi^{0_{12}}\right] M_{2}, z_{2}\right)$ does not vanish.
Lemma 3.3. For small enough $\delta>0$ we have that

$$
\left|\frac{1}{1-\varphi\left(z_{1}, \mathcal{X}_{12}\left[\Phi^{\circ_{12}}\right] M_{2}, z_{2}\right)}\right| \lesssim 1 .
$$

Proof of Lemma 3.3: If $u_{\delta}\left(z_{1}, z_{2}\right)=0$, then $1-\varphi(\ldots)=1$. Otherwise $z_{1} \approx z_{2}$ or $z_{1} \approx \bar{z}_{2}$. In this regime we only deal with the extreme case $u_{\delta}=1$. For the intermediate case $u_{\delta} \in(0,1)$ some minor additional ideas are required, however, we do not want to discuss them here. We consider two cases: when $z_{1}, z_{2}$ are in different half-planes and when they are in the same one.
(1) $\Im z_{1} \cdot \Im z_{2}<0$. We compute the fraction which we need to estimate using the definitions of $\Phi$, regular part and $\mathcal{X}_{12}$ :

$$
\left(1-\varphi\left(z_{1}, \mathcal{X}_{12}\left[\Phi^{\circ_{12}}\right] M_{2}, z_{2}\right)\right)^{-1}=\left(1-\frac{\left\langle M_{1} M_{2}\right\rangle}{\left\langle M_{1} M_{2}\right\rangle}+\frac{\left\langle M_{1}\right\rangle}{\left\langle M_{1} M_{2}\right\rangle} \cdot \frac{\left\langle M_{1} M_{2}\right\rangle}{\left\langle M_{1} M_{2}^{2}\right\rangle}\right)^{-1}=\frac{\left\langle M_{1} M_{2}\right\rangle^{2}}{\left\langle M_{1}\right\rangle\left\langle M_{1} M_{2}^{2}\right\rangle}
$$

Since $\left\langle M_{1} M_{2}\right\rangle^{2} \lesssim 1$ and $\left|\left\langle M_{1}\right\rangle\right| \sim 1$, we only need to show that $\left|\left\langle M_{1} M_{2}^{2}\right\rangle\right|^{-1} \lesssim 1$. The following calculation establishes this inequality:

$$
\begin{aligned}
& \frac{1}{\left|\left\langle M_{1} M_{2}^{2}\right\rangle\right|}=\frac{\left|z_{1}-z_{2}+\left\langle M_{1}\right\rangle-\left\langle M_{2}\right\rangle\right|}{\left|\left\langle\left(M_{1}-M_{2}\right) M_{2}\right\rangle\right|} \lesssim \frac{1}{\left|\left\langle\left(M_{1}-M_{2}\right) M_{2}\right\rangle\right|} \\
& \quad=\frac{1}{\left|\left\langle\left(M_{1}-M_{1}^{*}\right) M_{2}\right\rangle+\left\langle\left(M_{1}^{*}-M_{2}\right) M_{2}\right\rangle\right|} \\
& \quad=\frac{1}{\left|\left\langle\left(M_{1}-M_{1}^{*}\right) M_{1}^{*}\right\rangle+\left\langle\left(M_{1}-M_{1}^{*}\right)\left(M_{2}-M_{1}^{*}\right)\right\rangle+\left\langle\left(M_{1}^{*}-M_{2}\right) M_{2}\right\rangle\right|} \\
& \quad=\frac{1}{\mid 2 i\left\langle\Im M_{1} \cdot M_{1}^{*}\right\rangle+2 i\left\langle\Im M_{1} \cdot M^{\prime}\left(\zeta_{1}\right)\left(z_{2}-\overline{z_{1}}\right)\right\rangle+\left\langleM ^ { \prime } ( \zeta _ { 2 } ) \left(\overline{\left.\left.z_{1}-z_{2}\right) M_{2}\right\rangle \mid}\right.\right.} \\
& \quad=\frac{1}{\left|2\left\langle\left(\Im M_{1}\right)^{2}\right\rangle+2 i\left\langle\Im M_{1} \Re M_{1}\right\rangle+\mathcal{O}\left(\left|z_{1}-\overline{z_{2}}\right|\right)\right|} \\
& \quad \lesssim \frac{1}{\left|\left(\left\langle\Im M_{1}\right)^{2}\right\rangle\right|+\mathcal{O}\left(\left|z_{1}-\overline{z_{2}}\right|\right)} \leq \frac{1}{\left\langle\Im M_{1}\right\rangle^{2}+\mathcal{O}\left(\left|z_{1}-\overline{z_{2}}\right|\right)} \lesssim 1 .
\end{aligned}
$$

(2) $\Im z_{1} \cdot \Im z_{2}>0$. In this case we can also compute that

$$
\frac{1}{1-\varphi\left(z_{1}, \mathcal{X}_{12}\left[\Phi^{\circ_{12}}\right] M_{2}, z_{2}\right)}=\frac{\left\langle M_{1} M_{2}^{*}\right\rangle^{2}\left(1-\left\langle M_{1} M_{2}\right\rangle\right)}{\left\langle M_{1} M_{2} M_{2}^{*}\right\rangle\left(\left\langle M_{1}\right\rangle\left\langle M_{1} M_{2}^{*}\right\rangle-\left\langle M_{1} M_{2}^{-1} M_{2}^{*}\right\rangle\right)}
$$

We give lower estimates of order 1 for each factor in the denominator:

$$
\begin{aligned}
& \left|\left\langle M_{1} M_{2} M_{2}^{*}\right\rangle\right|=\left|\left\langle M_{1}^{2} M_{1}^{*}\right\rangle\right|+\mathcal{O}\left(\left|z_{1}-z_{2}\right|\right)=\frac{\left|\left\langle M_{1} \Im M_{1}\right\rangle\right|}{\left|\eta+\left\langle\Im M_{1}\right\rangle\right|}+\mathcal{O}\left(\left|z_{1}-z_{2}\right|\right) \\
& \quad \gtrsim\left|\left\langle M_{1} \Im M_{1}\right\rangle\right|+\mathcal{O}\left(\left|z_{1}-z_{2}\right|\right)=\left|\left\langle\Re M_{1} \cdot \Im M_{1}\right\rangle+i\left\langle\left(\Im M_{1}\right)^{2}\right\rangle\right|+\mathcal{O}\left(\left|z_{1}-z_{2}\right|\right) \\
& \quad \geq\left|\left\langle\left(\Im M_{1}\right)^{2}\right\rangle\right|+\mathcal{O}\left(\left|z_{1}-z_{2}\right|\right) \geq\left\langle\Im M_{1}\right\rangle^{2}+\mathcal{O}\left(\left|z_{1}-z_{2}\right|\right) \gtrsim 1
\end{aligned}
$$

And for the second factor:

$$
\begin{aligned}
& \left|\left\langle M_{1}\right\rangle\left\langle M_{1} M_{2}^{*}\right\rangle-\left\langle M_{1} M_{2} M_{2}^{*}\right\rangle\right|=\left|\left\langle M_{1}\right\rangle\left\langle M_{1} M_{1}^{*}\right\rangle-\left\langle M_{1} M_{1}^{-1} M_{1}^{*}\right\rangle\right|+\mathcal{O}\left(\left|z_{1}-z_{2}\right|\right) \\
& \quad=\left|\left(\left\langle M_{1}\right\rangle-\left\langle M_{1}^{*}\right\rangle\right)+\left\langle M_{1}\right\rangle\left(\left\langle M_{1} M_{1}^{*}\right\rangle-1\right)\right|+\mathcal{O}\left(\left|z_{1}-z_{2}\right|\right) \\
& \quad \gtrsim\left|\left\langle\Im M_{1}\right\rangle\right|-\left|1-\left\langle M_{1} M_{1}^{*}\right\rangle\right|+\mathcal{O}\left(\left|z_{1}-z_{2}\right|\right)=\left|\left\langle\Im M_{1}\right\rangle\right|+\mathcal{O}\left(\eta+\left|z_{1}-z_{2}\right|\right) \gtrsim 1 .
\end{aligned}
$$

This finishes the proof of Lemma 3.3 in the second case.
Next, we take scalar product of (3.18) with two deterministic vectors $\boldsymbol{x}, \boldsymbol{y}$ satisfying $\|\boldsymbol{x}\|,\|\boldsymbol{y}\| \leq 1$. In the resulting expression we need to discuss separately two terms:

$$
\begin{equation*}
\left(\left\langle\left(G_{1}-M_{1}\right)\left(\mathcal{X}_{12}\left[\Phi^{\circ_{12}}\right] M_{2}\right)^{\circ_{12}}\right\rangle G_{1} G_{2}\right)_{x y} \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\varphi\left(z_{1}, \Phi, z_{2}\right)\left(G_{1} G_{2}-M\left(z_{1}, I, z_{2}\right)\right)\right)_{\boldsymbol{x} \boldsymbol{y}} \tag{3.20}
\end{equation*}
$$

Estimating (3.19). In the matrix product under the trace in (3.19] the matrix $\left(\mathcal{X}_{12}\left[\Phi^{0_{12}}\right] M_{2}\right)^{0_{12}}$ may not be $\left(z_{1}, z_{1}\right)$-regular. However, the following continuity of regular part with respect to spectral parameters holds:

Lemma 3.4. Let $R$ be a deterministic matrix with $\|R\| \leq 1, z_{1}, z_{2}$ are in the spectral domain, $E_{j}=\Re z_{j}$, $\eta_{j}=\left|\Im z_{j}\right|, j=1,2$. Then in holds that

$$
R^{\circ_{z_{1}, z_{2}}}=R^{\circ_{z_{1}, z_{1}}}+\mathcal{O}\left(\left|E_{1}-E_{2}\right|+\left|\eta_{1}-\eta_{2}\right|\right),
$$

where implicit constant in $\mathcal{O}$ does not depend on $R, z_{1}, z_{2}, N$, but may depend on $\delta$.
The proof of Lemma 3.4 is an easy application of (2.3) and hence is omitted. This lemma gives that (3.19) equals to

$$
\begin{equation*}
\left(\left\langle\left(G_{1}-M_{1}\right)\left(\mathcal{X}_{12}\left[\Phi^{\mathrm{O}_{12}}\right] M_{2}\right)^{\circ_{11}}\right\rangle+\left\langle G_{1}-M_{1}\right\rangle \mathcal{O}\left(\left|E_{1}-E_{2}\right|+\left|\eta_{1}-\eta_{2}\right|\right)\right)\left(G_{1} G_{2}\right)_{\boldsymbol{x} \boldsymbol{y}} \tag{3.21}
\end{equation*}
$$

In the case $\Im z_{1} \Im z_{2}<0$ we use resolvent identity in order to estimate the second factor:

$$
\begin{align*}
& \left|\left(G_{1} G_{2}\right)_{\boldsymbol{x} \boldsymbol{y}}\right|=\left|\frac{\left(G_{1}\right)_{\boldsymbol{x} \boldsymbol{y}}-\left(G_{2}\right)_{\boldsymbol{x} \boldsymbol{y}}}{z_{1}-z_{2}}\right| \prec\left(1+\frac{1}{\sqrt{N \eta_{1}}}+\frac{1}{\sqrt{N \eta_{2}}}\right) \cdot \frac{1}{\left|E_{1}-E_{2}\right|+\eta_{1}+\eta_{2}}  \tag{3.22}\\
& \quad \lesssim \frac{1}{\left|E_{1}-E_{2}\right|+\eta_{1}+\eta_{2}},
\end{align*}
$$

where we used usual isotropic local law. In the case $\Im z_{1} \Im z_{2}>0$ we employ the integral representation in this term:

$$
\left(G_{1} G_{2}\right)_{\boldsymbol{x} \boldsymbol{y}}=\left(G\left(E_{1}+i \eta_{1}\right) G\left(E_{2}+i \eta_{2}\right)\right)_{\boldsymbol{x} \boldsymbol{y}}=\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{(G(x+i \eta / 3))_{\boldsymbol{x} \boldsymbol{y}}}{\left(x+i \eta / 3-z_{1}\right)\left(x+i \eta / 3-z_{2}\right)} d x
$$

Again by using the usual isotropic local law we get that

$$
\begin{align*}
& \left|\left(G_{1} G_{2}\right)_{\boldsymbol{x y}}\right| \prec\left(1+\frac{1}{\sqrt{N \eta}}\right) \int_{\mathbb{R}} \frac{d x}{\left|x-E_{1}-i\left(\eta_{1}-\eta / 3\right)\right| \cdot\left|x-E_{2}-i\left(\eta_{2}-\eta / 3\right)\right|}  \tag{3.23}\\
& \quad \prec\left(1+\frac{1}{\sqrt{N \eta}}\right) \frac{\log N}{\left|E_{1}-E_{2}\right|+\eta_{1}+\eta_{2}} \prec \frac{1}{\left|E_{1}-E_{2}\right|+\eta_{1}+\eta_{2}} .
\end{align*}
$$

where $\log N$ was absorbed by $\prec$. Now we use either (3.22) or (3.23) depending on sign of $\Im z_{1} \Im z_{2}$ in (3.21) and get the estimate for (3.19):

$$
\begin{aligned}
&|\sqrt{3.19}| \prec \frac{\left|\left\langle\left(G_{1}-M_{1}\right)\left(\mathcal{X}_{12}\left[\Phi^{\circ_{12}}\right] M_{2}\right)^{\circ_{11}}\right\rangle\right|+\left|\left\langle G_{1}-M_{1}\right\rangle\right| \mathcal{O}\left(\left|E_{1}-E_{2}\right|+\left|\eta_{1}-\eta_{2}\right|\right)}{\left|E_{1}-E_{2}\right|+\eta_{1}+\eta_{2}} \\
& \quad \prec \frac{1}{\left|E_{1}-E_{2}\right|+\eta_{1}+\eta_{2}} \cdot \frac{\psi_{1}^{\text {av }}}{N \sqrt{\eta}}+\frac{1}{N \eta} \prec \frac{1}{N \eta}+\frac{1}{\sqrt{N} \eta} \cdot \frac{\psi_{1}^{\text {av }}}{\sqrt{N \eta}} .
\end{aligned}
$$

Estimating (3.20). We again distinguish between cases $\Im z_{1} \Im z_{2}<0$ and $\Im z_{1} \Im z_{2}>0$.
(1) $\Im z_{1} \Im z_{2}<0$. For the first factor in (3.20) we have

$$
\begin{gather*}
\left|\varphi\left(z_{1}, \Phi, z_{2}\right)\right|=\left|\frac{\left\langle M_{1} \Phi M_{2}\right\rangle}{\left\langle M_{1} M_{2}\right\rangle}\right|=\left|\frac{\left\langle M_{1}\right\rangle-\left\langle M_{1}\right\rangle\left\langle M_{1} M_{2}\right\rangle}{\left\langle M_{1} M_{2}\right\rangle}\right| \lesssim\left|1-\left\langle M_{1} M_{2}\right\rangle\right|  \tag{3.24}\\
=\frac{\left|z_{1}-z_{2}\right|}{\left|\left\langle M_{1}\right\rangle-\left\langle M_{2}\right\rangle+z_{1}-z_{2}\right|} \lesssim\left|z_{1}-z_{2}\right|=\mathcal{O}\left(\left|E_{1}-E_{2}\right|+\eta_{1}+\eta_{2}\right)
\end{gather*}
$$

In the factor containing $G_{1} G_{2}$ we use resolvent identity and the corresponding property of the deterministic approximation:

$$
\begin{align*}
& \left|\left(G_{1} G_{2}-M\left(z_{1}, I, z_{2}\right)\right)_{\boldsymbol{x} \boldsymbol{y}}\right|=\left|\frac{\left(G_{1}-M_{1}\right)_{\boldsymbol{x} \boldsymbol{y}}-\left(G_{2}-M_{2}\right)_{\boldsymbol{x} \boldsymbol{y}}}{z_{1}-z_{2}}\right|  \tag{3.25}\\
& \prec\left(\frac{1}{\sqrt{N \eta_{1}}}+\frac{1}{\sqrt{N \eta_{2}}}\right) \cdot \frac{1}{\left|E_{1}-E_{2}\right|+\eta_{1}+\eta_{2}} \prec \frac{1}{\sqrt{N \eta}} \cdot \frac{1}{\left|E_{1}-E_{2}\right|+\eta_{1}+\eta_{2}} .
\end{align*}
$$

Combining bounds (3.24) and (3.25) we get that $\mid(\sqrt{3.20} \mid \prec 1 / \sqrt{N \eta}$.
(1) $\Im z_{1} \Im z_{2}>0$. Using integral representation for $G_{1} G_{2}$ and the same one for $M\left(z_{1}, I, z_{2}\right)$ we get inequality (3.25) in the given case. This step is fully analogous to what was done during estimating (3.19). For $\left|\varphi\left(z_{1}, \Phi, z_{2}\right)\right|$ we have an obvious upper estimate of order 1 and it is not possible to improve it. But 3.20) comes with the factor $\varphi\left(z_{1}, \mathcal{X}[B] M_{2}, z_{2}\right)$, which can be bounded is a nicer way (then just by constant) in the current case:

$$
\begin{aligned}
\mid \varphi\left(z_{1}\right. & \left., \mathcal{X}\left[A_{1}\right] M_{2}, z_{2}\right) \left.\left|=\left|\frac{\left\langle M_{1} \mathcal{X}\left[A_{1}\right] M_{2} M_{2}^{*}\right\rangle}{M_{1} M_{2}^{*}}\right| \lesssim\right|\left\langle M_{1} \mathcal{X}\left[A_{1}\right] M_{2} M_{2}^{*}\right\rangle \right\rvert\, \\
& =\left|\left\langle M_{1} A_{1} M_{2} M_{2}^{*}\right\rangle+\frac{\left\langle M_{1} A_{1} M_{2}\right\rangle}{1-\left\langle M_{1} M_{2}\right\rangle}\left\langle M_{1} M_{2} M_{2}^{*}\right\rangle\right| \\
& =\left|\frac{1}{\Im z_{2}+\left\langle\Im M_{2}\right\rangle}\left(\left\langle M_{1} A_{1} \Im M_{2}\right\rangle+\frac{\left\langle M_{1} A_{1} M_{2}\right\rangle}{1-\left\langle M_{1} M_{2}\right\rangle}\left\langle M_{1} \Im M_{2}\right\rangle\right)\right| \\
& \lesssim \left\lvert\, \frac{1}{2 i}\left(\left.\left\langle M_{1} A_{1} M_{2}\right\rangle-\left\langle M_{1} A_{1} M_{2}^{*}\right\rangle+\frac{\left\langle M_{1} A_{1} M_{2}\right\rangle}{1-\left\langle M_{1} M_{2}\right\rangle}\left(\left\langle M_{1} M_{2}\right\rangle-\left\langle M_{1} M_{2}^{*}\right\rangle\right) \right\rvert\,\right.\right. \\
& \lesssim\left|\frac{\left\langle M_{1} A_{1} M_{2}\right\rangle\left(1-\left\langle M_{1} M_{2}\right\rangle+\left\langle M_{1} M_{2}\right\rangle-\left\langle M_{1} M_{2}^{*}\right\rangle\right)}{1-\left\langle M_{1} M_{2}\right\rangle}\right| \lesssim\left|1-\left\langle M_{1} M_{2}^{*}\right\rangle\right| \\
& \lesssim\left|z_{1}-\bar{z}_{2}\right|=\mathcal{O}\left(\left|E_{1}-E_{2}\right|+\eta_{1}+\eta_{2}\right) .
\end{aligned}
$$

Therefore,

$$
\left|\varphi\left(z_{1}, \mathcal{X}[B] M_{2}, z_{2}\right) \cdot \sqrt{3.20}\right| \prec \frac{1}{\sqrt{N \eta}}
$$

Collecting all bounds for the terms in (3.18) we get that (3.6) holds with:

$$
A_{1}^{\prime}=\left(\mathcal{X}_{12}\left[A_{1}\right] M_{2}\right)^{\circ_{12}}+\frac{\varphi\left(z_{1}, \mathcal{X}_{12}\left[A_{1}\right] M_{2}, z_{2}\right)}{1-\varphi\left(z_{1}, \mathcal{X}_{12}\left[\Phi^{\circ_{12}}\right] M_{2}, z_{2}\right)}\left(\mathcal{X}_{12}\left[\Phi^{\circ_{12}}\right] M_{2}\right)^{\circ_{12}}
$$

## Appendix A. Properties of the deterministic approximation

Definition A.1. Let $k \in \mathbb{N}$. A pair is a tuple $p=(i, j)$, where $i, j \in\{1, \ldots, k\}$ and $i<j$. All sets of pairs which we consider consist of pairwise distinct pairs (but some of pairs may have common elements). We will use $P$ to denote sets of pairs. $\mathcal{P}_{k}$ is the collection of all sets of pairs on the set $\{1, \ldots, k\}$.

Consider $P \in \mathcal{P}_{k}$. We will say that $P$ is a non-crossing set of pairs if for all $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right) \in P$ such that $i_{1}<i_{2}<j_{1}$ it holds that $i_{1}<j_{2}<j_{1}$. Denote the collection of all non-crossing sets of pairs on the set $\{1, \ldots, k\}$ by $\mathcal{P}_{k}^{n c}$.
Definition A.2. Consider $P \in \mathcal{P}_{k}^{n c}$. The $N \times N$ matrix $M_{P}\left(z_{1}, A_{1}, z_{2}, \ldots, z_{k}\right)$ is defined in the following way. We start with the product $M_{1} A_{1} M_{2} A_{2} \ldots A_{k-1} M_{k}$. For every $(i, j) \in P$ we cross out of this product the following part: $A_{i} M_{i+1} \ldots A_{j-1}$. Then $M_{P}\left(z_{1}, A_{1}, z_{2}, \ldots, z_{k}\right)$ is the string obtained after all "crossings" are completed.

Note that for each $P \in \mathcal{P}_{k}^{n c}$ the first factor of $M_{P}\left(z_{1}, A_{1}, z_{2}, \ldots, z_{k}\right)$ is $M_{1}$ and the last is $M_{k}$.
Definition A.3. Consider $P \in \mathcal{P}_{k}^{n c}$ and $(i, j) \in P$. Consider the product $M_{i} A_{i} M_{i+1} \ldots M_{j}$. For all $(s, t) \in P$ such that $i \leq s<t \leq j$ and $(s, t) \neq(i, j)$ we cross $A_{s} M_{s+1} \ldots A_{t-1}$ out of this product. Then $\tilde{m}_{P}^{(i, j)}\left(z_{1}, A_{1}, z_{2}, \ldots, z_{k}\right)$ is the normalized trace of the obtained product. We also denote

$$
m_{P}^{(i, j)}\left(z_{1}, A_{1}, z_{2}, \ldots, z_{k}\right):=\frac{\tilde{m}_{P}^{(i, j)}\left(z_{1}, A_{1}, z_{2}, \ldots, z_{k}\right)}{1-\left\langle M_{i} M_{j}\right\rangle}
$$

and

$$
m_{P}\left(z_{1}, A_{1}, z_{2}, \ldots, z_{k}\right):=\prod_{(i, j) \in P} m_{P}^{(i, j)}\left(z_{1}, A_{1}, z_{2}, \ldots, z_{k}\right)
$$

## Theorem A.4.

$$
\begin{equation*}
M\left(z_{1}, A_{1}, z_{2}, \ldots, z_{k}\right)=\sum_{P \in \mathcal{P}_{k}^{n c}} m_{P}\left(z_{1}, A_{1}, z_{2}, \ldots, z_{k}\right) M_{P}\left(z_{1}, A_{1}, z_{2}, \ldots, z_{k}\right) \tag{A.1}
\end{equation*}
$$

Proof of Theorem A.4: It is sufficient to check that

$$
\tilde{M}\left(z_{1}, A_{1}, z_{2}, \ldots, z_{k}\right):=\sum_{P \in \mathcal{P}_{k}^{n c}} m_{P} M_{P}
$$

satisfies recursive formula 2.7). We start with analyzing $\left\langle\tilde{M}\left(z_{1}, A_{1}, z_{2}, \ldots, z_{l}\right)\right\rangle$ in terms of $\mathcal{P}_{l}^{n c}$ :

$$
\left\langle\tilde{M}\left(z_{1}, A_{1}, z_{2}, \ldots, z_{l}\right)\right\rangle=\sum_{P \in \mathcal{P}_{l}^{n c}} m_{P}\left\langle M_{P}\right\rangle=\sum_{1} m_{P}\left\langle M_{P}\right\rangle+\sum_{2} m_{P}\left\langle M_{P}\right\rangle
$$

where the first sum goes over all non-crossing sets of pairs which do not contain the pair $(1, l)$, and the second over the rest of sets of non-crossing pairs. There is a natural bijection between this two sets: if $P$ belongs to the first group of indices, then $P \cup(1, l)$ is in the second group. Also each set from the second group of indices is of the form $P \cup(1, l)$, where $P$ is from the first group. Thus we have:

$$
\left\langle\tilde{M}\left(z_{1}, A_{1}, z_{2}, \ldots, z_{l}\right)\right\rangle=\sum_{1}\left(m_{P}\left\langle M_{P}\right\rangle+m_{P \cup(1, l)}\left\langle M_{P \cup(1, l)}\right\rangle\right) .
$$

Note that $M_{P \cup(1, l)}=M_{1} M_{l}$. We also have that

$$
m_{P \cup(1, l)}=m_{P} \frac{\left\langle M_{P}\right\rangle}{1-\left\langle M_{1} M_{l}\right\rangle}
$$

Therefore,

$$
m_{P}\left\langle M_{P}\right\rangle+m_{P \cup(1, l)}\left\langle M_{P \cup(1, l)}\right\rangle=m_{P}\left\langle M_{P}\right\rangle+m_{P} \frac{\left\langle M_{P}\right\rangle}{1-\left\langle M_{1} M_{l}\right\rangle}\left\langle M_{1} M_{l}\right\rangle=\frac{m_{P}\left\langle M_{P}\right\rangle}{1-\left\langle M_{1} M_{l}\right\rangle},
$$

$$
\begin{gathered}
\left\langle\tilde{M}\left(z_{1}, A_{1}, z_{2}, \ldots, z_{l}\right)\right\rangle M_{1} M_{l}=\sum_{P \in \mathcal{P}_{l}^{n c},(1, l) \in P} m_{P} M_{P}, \\
M_{1} A_{1} \tilde{M}\left(z_{2}, A_{2}, \ldots, A_{k-1}, z_{k}\right)=\sum_{P \in \mathcal{P}^{(1)}} m_{P} M_{P},
\end{gathered}
$$

where $\mathcal{P}^{(1)}$ is the subset of $\mathcal{P}_{k}^{n c}$ consisting of all sets of pairs which do not contain 1 ;

$$
\left\langle\tilde{M}\left(z_{1}, A_{1}, \ldots, A_{j-1}, z_{j}\right)\right\rangle M_{1} \tilde{M}\left(z_{j}, A_{j}, \ldots, A_{k-1}, z_{k}\right)=\sum_{P \in \mathcal{P}^{(j)}} m_{P} M_{P}
$$

where $\mathcal{P}^{(j)}$ is the collection of all non-crossing sets of pairs containing $(1, j)$ and where $(1, j)$ is the biggest by inclusion of intervals pair which contains 1 . Hence $\tilde{M}$ satisfies 2.7).

## References

[1] J. Alt, L. Erdős, T. Krüger, and D. Schröder. Correlated random matrices: band rigidity and edge universality. The Annals of Probability, 48:963-1001, 2020.
[2] G. Cipolloni, L. Erdős, J. Henheik, and O. Kolupaiev. Gaussian fluctuations in the equipartition principle for wigner matrices. arXiv:2301.05181, 2023.
[3] G. Cipolloni, L. Erdős, J. Henheik, and D. Schröder. Optimal lower bound on eigenvector overlaps for non-hermitian random matrices. arXiv: 2301.03549, 2023.
[4] G. Cipolloni, L. Erdős, and D. Schröder. Optimal multi-resolvent local laws for wigner matrices. Electronic Journal of Probability, 27:1-38, 2022.
[5] L. Erdős, A. Knowles, H.-T. Yau, and J. Yin. The local semicircle law for a general class of random matrices. Electronic Journal of Probability, 18(59):1-58, 2013.


[^0]:    ${ }^{\dagger}$ IST Austria, Am Campus 1,3400 Klosterneuburg, Austria
    E-mail address: oleksii.kolupaiev@ist.ac.at.
    Date: March 1, 2023.

