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1 Introduction

The main objective of this project was to learn and understand the main tools and technical details of
Theorem 2.2 in [1] and attempt to generalize its proof for Wigner-type matrices. Such generalization
was carried out in [2] for large scales, but we conjecture that the result can be improved to the optimal
scale by using only resolvent comparison methods. For the sake of simplicity we resort to studying the
real symmetric case.

2 Model

2.1 Wigner-type matrices

Definition 2.1. Let H = (Hij)
N
i,j=1 be an N×N matrix with independent entries up to real symmetry

condition H = Ht satisfying
E [Hij ] = 0. (2.1)

Denote by S the matrix of variances: Sij := E
[
|Hij |2

]
, which satisfies

csup
N

≤ Sij ≤
Cinf

N
, (A)

for all i, j ∈ {1, . . . , N} and some strictly positive constants Csup, cinf .

We assume a uniform bound on all other moments of
√
NHij, that is for any k ∈ N there exists a

positive constant Ck independent of N such that

E
[
|
√
NHij |k

]
≤ Ck (2.2)

holds for all i, j ∈ {1, . . . , N}.

Additionally, we assume that the matrix of variances satisfies Hölder regularity condition, i.e.

|Sij − Sij′ | ≤
L

N

(
|j − j′|

N

)1/2

, (B)

for all i, j, j′ ∈ {1, . . . , N} and some positive constant L.

2.2 Notations

For a vector x ∈ CN we use the standart definitions of ℓ2 and ℓ∞ norms, namely,

∥x∥2 =

 N∑
j=1

|xj |2
1/2

, ∥x∥∞ = max
j

|xj |.
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For a linear operator T : CN → CN we denote its matrix norms induced by ℓ2 and ℓ∞ norms respec-
tively as

∥T∥ℓ2→ℓ2 = sup
∥x∥2=1

∥Tx∥2 , ∥T∥ℓ∞→ℓ∞ = sup
∥x∥∞=1

∥Tx∥∞ .

For two vectors x, y ∈ CN we use the angle bracket to denote the ℓ2 scalar product

⟨x, y⟩ =
N∑
j=1

x̄jyj .

We use xy to denote a coordinate-wise multiplication of the vectors,

(xy)j = xjyj , j ∈ {1, . . . , N}.

Similarly, for a given vector x with non-zero entries, 1x denotes a coordinate-wise multiplicative inverse(
1

x

)
j

=
1

xj
, j ∈ {1, . . . , N}

We will use the following definition of stochastic domination (Definition 6.4 in [3])

Definition 2.2. Let X = X(N)(u) and Y = Y (N)(u) be two families of random variables depending
on a parameter u ∈ U (N). We say that Y stochastically dominates X uniformly in u if for any ε > 0
and D > 0 there exists N0(ε,D) such that for any N ≥ N0(ε,D),

sup
u∈U(N)

P
[
X(N)(u) > NεY (N)(u)

]
< N−D.

We denote this by X ≺ Y or X = O≺(Y ).

For two deterministic quantities X,Y ∈ R dependent on N , we write X ≪ Y if there exists
ε,N0 > 0 such that |X| ≤ N−ε|Y | for all N ≥ N0.
The following proposition encompasses the main properties of stochastic domination.

Proposition 2.3. (Proposition 6.5 in [3])
(1) X ≺ Y and Y ≺ Z imply X ≺ Z;
(2) X1 ≺ Y1 and X2 ≺ Y2 imply X1 + X2 ≺ Y1 + Y2 and X1X2 ≺ Y1Y2;
(3) X ≺ Y, E [Y] ≥ N−c and |X | ≤ N c almost surely for some positive c imply E [X ] ≺ E [Y].

We use C and c to denote constants the value of which may change from line to line.

2.3 Linear eigenvalue statistics

Let g be a complex-valued C2
c (R) function. Fix an energy E0 in the bulk of the self-consistent spectrum

and let N−1 ≪ η0 ≪ 1.
We focus on studying scaled test functions given by

f(x) := g

(
x− E0

η0

)
(2.3)

The goal is to show that
Tr f(H)− E [Tr f(H)]√

V (f)
→ N (0, 1) (2.4)

in distribution as N → ∞, for some functional V which expresses the variance.
This can be accomplished by using the characteristic function method.
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3 Local Law and Preliminaries

For a symmetric matrix H and a spectral parameter z ∈ C, let G(z) denote the resolvent of H.

G(z) = (H − z)
−1

. (3.1)

Let m(z) = (mj(z))
N
j=1 be the solution to the quadratic vector Dyson equation,

−1

mj(z)
= z +

N∑
k=1

Sjkmk(z), j ∈ {1, . . . , N}, Im z > 0. (3.2)

By Theorem 6.1.4 in [4], the solution m(z) is unique under the condition Imm(z) > 0 and can be
extended into the lower complex half-plane by setting m(z̄) := m(z), Im z > 0.
Define m(z) to be the average of the coordinates of m(z),

m(z) =
1

N

N∑
j=1

mj(z). (3.3)

Lemma 3.1. The solution m(z) of (3.2) satisfies the following properties
(1) (Theorem 6.1.4 in [4]) For every ȷ ∈ {1, . . . , N} there exists a generating probability measure νj(dx)
such that

mj(z) =

∫
R

νj(dx)

x− z
. (3.4)

(2) (Theorem 7.2.2 in [4]) Let ρ(z) := Imm(z)/π be the harmonic extension of the average of νj.
If the matrix of variances S satisfies the condition (A), then for all z ∈ C\R and all j ∈ {1, . . . , N},
the solution admits the following bounds

|mj(z)| ≤
c

ρ(z) + dist(z, supp ρ)
,

1

|mj(z)|
≤ C(1 + |z|). (3.5)

Let τ > 0. We define the spectral domain

D := {z ∈ C : N−1+τ ≤ Im z ≤ τ−1, |Re z| ≤ τ−1}, (3.6)

and two control parameters (as in [1]) for z = E + iη ∈ C\R,

Ψ(z) :=

√
| Imm(z)|

N |η|
+

1

N |η|
, Θ(z) :=

1

N |η|
. (3.7)

We give the following definition to the bulk of the self-consistent spectrum.
Let I be the set on which the generating measure νj defined in Lemma 3.1 is positive. Assumption
(B) and Theorem 6.1.13 of [4] guarantee that the set I does not depend on the index j and consist of
a finite union of open intervals (α(j), β(j)). Then for κ > 0 we define the bulk by

Iκ :=
⋃
j

[α(j) + κ, β(j) − κ], (3.8)

and the bulk domain
Dκ := {z ∈ D : Re z ∈ Iκ}. (3.9)

In particular, for all z ∈ Iκ
ρ(z) ≥ C(κ), (3.10)

for some positive constant C(κ) dependent of κ.

Theorem 3.2. Let w, x, y be deterministic vectors in CN satisfying ∥w∥∞ = 1 and ∥x∥2 = ∥y∥2 = 1.
Then the following estimates hold uniformly in z ∈ D:

|Gij(z)− δijmj(z)| ≺ Ψ(z), (3.11)
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∣∣∣∣∣∣ 1N
N∑
j=1

wj (Gjj(z)−mj(z))

∣∣∣∣∣∣ ≺ Θ(z), (3.12)

∣∣∣∣∣∣⟨x,G(z)y⟩ −
N∑
j=1

mj(z)x̄jyj

∣∣∣∣∣∣ ≺ Ψ(z). (3.13)

We introduce the stability operator defied by the matrix

δij − Sijmj(z)mj(ζ), i, j ∈ {1, . . . , N}, z, ζ ∈ C\R, (3.14)

and denoted by 1− Sm(z)m(ζ) for convenience of notation.
The stability analysis relies on the corresponding saturated self-energy operator F is defined by

Fij(z, ζ) := |mi(z)|Sij |mj(ζ)|. (3.15)

Proposition 3.3. (Proposition 4.5 in [2], analogous to Proposition 7.2.9 in [4]) Let F (z, ζ) be an
operator defined by (3.15). For any z, ζ ∈ C\R it is a symmetric matrix with positive entries, hence
by Perron–Frobenius theorem its principal eigenvalue is positive and simple and the corresponding ℓ2-
normalized eigenvector v(z, ζ) has strictly positive entries.
We have the following upper bound for the norm:

∥F (z, ζ)∥ℓ2→ℓ2 ≤ 1− 1

2

| Im z| ⟨v(z, z), |m(z)|⟩
⟨v(z, z), | Imm(z)|

|m(z)| ⟩
+ | Im ζ| ⟨v(ζ, ζ), |m(ζ)|⟩

⟨v(ζ, ζ), | Imm(ζ)|
|m(ζ)| ⟩

 . (3.16)

Furthermore, for some positive constant c

∥F (z, ζ)∥ℓ2→ℓ2 ≤ 1− c (| Im z|+ | Im ζ|) , (3.17)

and the entries of v(z, ζ) are comparable in size

c√
N

≤ vj(z, ζ) ≤
C√
N

, j ∈ {1, . . . , N}. (3.18)

By combining this with (3.5), it follows immediately that the stability operator 1− Sm(z)m(ζ) is
invertible.

Lemma 3.4. Cumulant expansion. (Lemma 4.2 in [1]) Let h be a real-valued random variable with
finite moments, let f be a C∞(R) function. Then for any l ∈ N the following expansion holds,

E [h · f(h)] =
l∑

j=0

1

j!
c(j+1)(h)E

[
dj

dhj
f(h)

]
+Rl+1, (3.19)

where c(j) is the j-th cumulant of h defined by

c(j)(h) = (−i)j
dj

dtj
(
logE

[
eith
])∣∣∣∣

t=0

,

and the remainder term Rl+1 satisfies

|Rl+1| ≤ Cl E
[
|h|l+2

]
sup

|x|≤M

|f (l+1)(x)|+ Cl E
[
|h|l+2 · 1|h|>M

] ∥∥∥f (l+1)(x)
∥∥∥
∞

, (3.20)

for any M > 0.
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4 Result

Theorem 4.1. Let the matrix of variances S satisfy assumptions (A) and (B).
Assume that the stability operator defined in (3.14) admits the following bound∥∥(1− Sm(z)m(ζ))−1

∥∥
ℓ2→ℓ2

≤ C

| Im z|+ | Im ζ|+ |ζ − z̄|
, (4.1)

for z, ζ ∈ Dκ with Im z Im ζ < 0 and Re z,Re ζ in the same connected component of Iκ defined in (3.8).
Assume additionally that the following estimate holds

N∑
i,j,k=1

(
(1−m2(z)S)−1

)
ij
mj(z)Πjk(z)Tkj(z, ζ) = T (z, ζ) +O≺(Θ(z) + Θ(ζ))η−1). (4.2)

where the main term T (z, ζ) is a deterministic quantity and the projector Π is defined as follows

Π(z) := |m(z)|−1w(z)w(z)∗|m(z)|, w(z) :=
Imm(z)

|m(z)|

∥∥∥∥ Imm(z)

|m(z)|

∥∥∥∥−1

2

. (4.3)

For f defined in (2.3) with N−1 ≪ η0 ≪ 1 and E0 ∈ Iκ as in (3.8), define

V (f) :=
1

π2

∫
Ωα

∫
Ωα

∂f̃(ζ)

∂ζ̄

∂f̃(z)

∂z̄
K(z, ζ)dζ̄dζ, (4.4)

where

K(z, ζ) :=

N∑
i,j=1

(
(1−m(z)2S)−1

)
ij
mj(z)

(
2
∂

∂ζ

(
N∑

k=1

(
1−Π(z)

)
jk

(
(1− Sm(z)m(ζ))−1(Sm(z)m(ζ))2

)
kj

)

+ 2
∂T (z, ζ)

∂ζ
+ Sjjm

′
j(ζ)mj(z) +

N∑
k=1

c(4)(Hjk)mj(z)mk(z)
∂ (mj(ζ)mk(ζ))

∂ζ

)
.

(4.5)

Then, if there exist positive constants c and C such that c ≤ V (f) ≤ C,

Tr f(H)− E [Tr f(H)]√
V (f)

→ N (0, 1). (4.6)

5 Proof

Following [1] and [2] we employ the characteristic function method.
We begin by introducing the quasi-analytic extension of the scaled test function f as defined in (2.3)

f̃(x+ iy) = χ(y) (f(x) + iyf ′(x)) , (5.1)

where χ : R → [−1, 1] is an even χ ∈ C∞
c (R) function supported on [−1, 1] satisfying χ(y) = 1 for

|y| < 1
2 .

Using the Helffer–Sjöstrand representation we can express the linear eigenvalue statistics in terms
of the resolvent of H. This is a crucial step, because it ”transfers the randomness” from the function
to the resolvent and allows us to proceed by using the local laws of Theorem 3.2 for G(z).

{1− E} [Tr f(H)] =
1

2π

∫
C

∂f̃

∂z̄
{1− E} [TrG(z)] dz̄dz. (5.2)

The characteristic function of linear eigenvalue statistics then admits the following form

ϕ(λ) := E [e(λ)] , e(λ) := exp

iλ
1

π

∫
C

∂f̃

∂z̄
{1− E} [TrG(z)] dz̄dz

 , λ ∈ R. (5.3)
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Differentiating with respect to λ we get

ϕ′(λ) = E

e(λ) i
π

∫
C

∂f̃

∂z̄
{1− E} [TrG(z)] dz̄dz

 . (5.4)

Computing the partial derivatives of (5.1) with respect to x and y we get

∂f̃

∂z̄
=

1

2

(
−yχ′(y)f ′(x) + i

(
yχ(y)f ′′(x) + χ′(y)f(x)

))
. (5.5)

Observe that the fact that χ is even implies

∂f̃

∂z̄
(x− iy) =

∂f̃

∂z̄
(x+ iy). (5.6)

It follows that the imaginary part of integrand in (5.2) is odd with respect to Im z, so the integral is
real and |e(λ)| = 1.

5.1 Non-contribution of the ultra-local scales

We eliminate a small vicinity of the real line from the integral in (5.2) using the argument from the
proof of Proposition 4.1 in [5].
Fix α ∈ (0, 1), such that N−αη0 ≫ N−1, where η0 is in (2.3), and define

Ωα := {z ∈ C : | Im z| > N−αη0}. (5.7)

For all x + iy ∈ Ωc
α we have χ(y) = 1, χ′(y) = 0, hence by (5.5) the derivative of the quasi-analytic

extension takes the form
∂f̃

∂z̄
=

iy

2
f ′′(x), x+ iy ∈ Ωc

α. (5.8)

Note that G(z̄) = G(z) hence we can write∣∣∣∣∣∣∣
∫
ΩC

α

∂f̃

∂z̄
{1− E} [TrG(z)] dz̄dz

∣∣∣∣∣∣∣ ≤
∫
R

|f ′′(x)|

∣∣∣∣∣∣∣
N−αη0∫
0

y Im ({1− E} [TrG(x+ iy)]) dy

∣∣∣∣∣∣∣dx (5.9)

We estimate the integral over y by considering two regimes:
For Im z = y ≥ y0 :=

√
η0 ·N−1−α we apply the local law (3.12) with wj = 1 to get∣∣∣∣∣∣∣

N−αη0∫
y0

y Im ({1− E} [TrG(x+ iy)]) dy

∣∣∣∣∣∣∣ ≺
N−αη0∫
y0

2y
N

Ny
dy = 2

(
N−αη0 − y0

)
= O≺(N

−αη0), (5.10)

because N−αη0 implies y0 ≪ N−αη0.
For Im z = y ∈ (0, y0) we use the fact that the map y 7→ y ImTrG(x+ iy) is non-decreasing, hence∣∣∣∣∣∣

y0∫
0

y Im ({1− E} [TrG(z)]) dy

∣∣∣∣∣∣ ≤ y20 (|ImTrG(x+ iy0)|+ |E [ImTrG(x+ iy0)]|) ≺ 4Ny20 , (5.11)

where the last estimate follows again from the local law (3.12) and the bounds in (3.5). By definition
of y0 we have Ny20 = N−αη0.
Finally, ∥f ′′∥1 = ∥g′′∥1 /η0, which implies

∫
Ωc

α

∂f̃

∂z̄
{1 − E} [TrG(z)] dz̄dz ≺

∫
R

|f ′′(x)|dx · O≺(N
−αη0 + Ny20) = O≺(N

−α). (5.12)
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Furthermore, it follows from |e(λ)| = 1 that

E

e(λ) i
π

∫
Ωc

α

∂f̃

∂z̄
{1− E} [TrG(z)] dz̄dz

 = O≺(N
−α) (5.13)

Hence, we can write

ϕ′(λ) =
i

π

∫
Ωα

∂f̃

∂z̄
E [{1− E} [TrG(z)] e(λ)] dz̄dz +O≺(N

−α). (5.14)

Define

ẽ(λ) := exp

iλ
1

π

∫
Ωα

∂f̃

∂z̄
{1− E} [TrG(x+ iy)] dz̄dz

 , (5.15)

then by (5.12) we have
e(λ)− ẽ(λ) = O≺(|λ|N−α), (5.16)

which by local law (3.12) yields

E [{1− E} [TrG(z)] · (e(λ)− ẽ(λ))] = O(|λ|N−αη−1). (5.17)

Further estimates will require the following technical lemma.

Lemma 5.1. (Lemma 5.4 in [2]) Let K(z) be a holomorphic function on C\R satisfying

|K(z)| ≤ C

| Im z|s
,

for some 1 ≤ s ≤ 2. Then there exists a constant C ′ > 0 such that∣∣∣∣∣∣
∫
Ωα

iyχ(y)f ′′(x)K(x+ iy)dxdy

∣∣∣∣∣∣ ≤ CC ′ logN(1 + ∥f ′′∥1)
s−1.

Using the estimate (5.17) and applying Lemma 5.1 for K(z) = E [{1− E} [TrG(z)] · (e(λ)− ẽ(λ))]
with s = 1 we get from (5.14)

ϕ′(λ) =
i

π

∫
Ωα

∂f̃

∂z̄
E [ẽ(λ) {1− E} [TrG(z)]] dz̄dz +O≺(|λ|N−α), (5.18)

note that logN factor in the error term of Lemma 5.1 is absorbed by stochastic domination.
We aim to show that ϕ′(λ) is proportional to −λE [ẽ(λ)] up to a negligible error. To achieve this we
need to estimate E [ẽ(λ) {1− E} [TrG(z)]] by using cumulant expansion formula (3.4) following the
approach laid out in the proof of Proposition 4.1 of [1] and Lemma 5.7 of [2].

5.2 Cumulant expansion

The goal of this subsection is to prove the following statement.
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Proposition 5.2. For any z ∈ D defined in (3.6) and all indices j ∈ {1, . . . , N} we have

−1

mj(z)
E [{1− E} [Gjj(z)] ẽ(λ)] = −mj(z)

N∑
k=1

Sjk E [{1− E} [Gkk(z)] ẽ(λ)]

− E [{1− E} [Tjj(z, z)] ẽ(λ)]

− 2iλ

π
E

ẽ(λ) ∫
Ωα

∂f̃

∂ζ̄

∂Tjj(z, ζ)

∂ζ
dζ̄dζ


− iλ

π
Sjj E [ẽ(λ)]

∫
Ωα

∂f̃

∂ζ̄
m′

j(ζ)mj(z)dζ̄dζ

− iλ

π
E [ẽ(λ)]

N∑
k=1

c(4)(Hjk)mj(z)mk(z)

∫
Ωα

∂f̃

∂ζ̄

∂(mj(ζ)mk(ζ))

∂ζ
dζ̄dζ

+O≺(Ψ(z)Θ(z) +N−1Ψ(z)(1 + |λ|2)η−1/2
0 +N−3/2(1 + |λ|)4),

(5.19)

where η0 is from (2.3), and for a, b ∈ {1, . . . , N}, z, ζ ∈ C\R we define

Tab(z, ζ) :=
∑
j ̸=b

SajGjb(z)Gjb(ζ). (5.20)

Note that after multiplying both sides of (5.19) by −mj(z) and carrying the first term of the right-
hand side to the left, we obtain an expression for E [{1− E} [Gjj(z)] ẽ(λ)] by inverting the operator

1 − m2(z)S. In the bulk the inverse of this operator,
(
1−m2(z)S

)−1
, is bounded by a constant as

shown in Lemma 7.3.2 of [4].

Proof of Proposition 5.2.
We begin by stating the resolvent identity,

zGij(z) =

N∑
k=1

HikGkj(z)− δij , i, j ∈ {1, . . . , N}, z ∈ C\R, (5.21)

which follows immediately from the definition of resolvent (3.1).
Observe that

E [X{1− E}[Y]] = E [{1− E}[X ]Y] , (5.22)

for any random variables X ,Y with E [X ] ,E [Y] ,E [XY] < ∞.
Applying identities (5.21) and (5.22) we get

z E [{1− E} [Gjj(z)] ẽ(λ)] =

N∑
k=1

E [{1− E} [HjkGkj(z)] ẽ(λ)] =

N∑
k=1

E [Hjk ·Gkj(z) {1− E} [ẽ(λ)]] ,

(5.23)
which allows us to use the cumulant expansion Lemma (3.4) with l = 3.

z E [{1− E} [Gjj(z)] ẽ(λ)] =

N∑
k=1

(
3∑

s=0

1

s!
c(s+1)(Hjk)E

[
∂s

∂Hs
jk

(Gkj(z) {1− E} [ẽ(λ)])

]
+R

(4)
jk

)
,

(5.24)
We denote the terms corresponding to each cumulant order summed over k by Is for s ∈ {1, 2, 3},
omitting the dependence on j for convenience. The s = 0 term vanishes since E [Hjk] = 0.

First we focus on I1. Recall that c
(2)(Hjk) = E

[
|Hjk|2

]
= Sjk, hence

I1 =

N∑
k=1

Sjk E
[
{1− E}

[
∂Gkj(z)

∂Hjk

]
ẽ(λ) +Gkj(z)

∂ẽ(λ)

∂Hjk

]
. (5.25)
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Partial derivatives of the resolvent entries with respect to matrix elements have the following expression.

∂Gab(z)

∂Hjk
= −Gaj(z)Gkb(z) +Gbj(z)Gka(z)

1 + δjk
. (5.26)

By separating the k = j term, the local law (3.11) and (3.5) then yields:

N∑
k=1

Sjk E
[
{1− E}

[
∂Gkj(z)

∂Hjk

]
ẽ(λ)

]
= −mj(z)

∑
k ̸=j

E [{1− E} [Gkk(z)] ẽ(λ)]

− E [{1− E} [Tjj(z, z)]] +O≺(N
−1).

(5.27)

We compute the partial derivatives of ẽ defined in (5.15):

∂ẽ(λ)

∂Hjk
= −2iλ

π
ẽ(λ)

∫
Ωα

∂f̃

∂ζ̄

∂Gkj(ζ)

∂ζ
dζ̄dζ. (5.28)

We require the following lemma, which is an immediate consequence of the Cauchy’s integral formula
for the derivatives of an analytic function. It will be applied to obtain local law analogues for the
derivatives of functions.

Lemma 5.3. (Lemma 5.5 in [2]) Let K(z) be a holomorphic function on C\R.
Then for any z ∈ C\R and any p ∈ N,∣∣∣∣∂pK

∂zp
(z)

∣∣∣∣ ≤ Ck| Im z|−p sup
|ζ−z|≤| Im z|/2

|K(ζ)|. (5.29)

Observe that K(z) := Gjj(z)−mj(z) is analytic and bounded by O≺(Ψ(z)), hence by Lemma 5.3
with p = 1 we have the following bound

∂Gjj(z)

∂z
−m′

j(z) = O≺(
Ψ(z)

| Im z|
). (5.30)

It follows by from Lemma 5.1 applied to the integral in (5.28) with k = j, K(z) =
∂Gjj(z)

∂z − m′
j(z)

and s = 3/2, that

∂ẽ(λ)

∂Hjj
= −2iλ

π
ẽ(λ)

∫
Ωα

∂f̃

∂ζ̄
m′

j(ζ)dζ̄dζ +O≺(|λ|η−1/2
0 ). (5.31)

Summing the remaining terms with the derivative of ẽ over k ̸= j we have from (5.20)

∑
k ̸=j

Sjk E
[
Gkj(z)

∂ẽ(λ)

∂Hjk

]
= −2iλ

π
E

ẽ(λ) ∫
Ωα

∂f̃

∂ζ̄

∂Tjj(z, ζ)

∂ζ
dζ̄dζ

 . (5.32)

Plugging (5.27), (5.31) and (5.32) into (5.25) and applying local laws (3.11), (3.12) we get

I1 =

(
z +

1

mj(z)

)
E [{1− E} [Gjj(z)] ẽ(λ)]−mj(z)

N∑
k=1

Sjk E [{1− E} [Gkk(z)] ẽ(λ)]

− E [{1− E} [Tjj(z, z)] ẽ(λ)]−
2iλ

π
E

ẽ(λ) ∫
Ωα

∂f̃

∂ζ̄

∂Tjj(z, ζ)

∂ζ
dζ̄dζ


− iλ

π
Sjj E

ẽ(λ) ∫
Ωα

∂f̃

∂ζ̄
m′

j(ζ)mj(z)dζ̄dζ


+O≺(Ψ(z)Θ(z) +N−1Ψ(z)|λ|η−1/2

0 ),

(5.33)
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where Tab(z, ζ) is defined in (5.20).
Note that the factor z in the first term cancels out with the left-hand side of (5.23) and 1/mj(z)
contributes to the left-hand side of (5.19).

Working with I2 we apply similar reasoning. Note that c(3)(Hjk) = E
[
|Hjk|3

]
and hence by

moment condition (2.2) the third cumulants are of order N−3/2.

I2 =

N∑
k=1

c(3)(Hjk)E

[
{1− E}

[
∂2Gkj(z)

∂H2
jk

]
ẽ(λ) + 2

∂Gkj(z)

∂Hjk

∂ẽ(λ)

∂Hjk
+Gkj(z)

∂2ẽ(λ)

∂H2
jk

]
. (5.34)

We start by computing the second derivatives of ẽ defined in (5.15) :

∂2ẽ(λ)

∂H2
jk

= ẽ(λ)

2iλ

π

∫
Ωα

∂f̃

∂ζ̄

∂Gkj(ζ)

∂ζ
dζ̄dζ

2

+ ẽ(λ)
2iλ

π

∫
Ωα

∂f̃

∂ζ̄

1

(1 + δjk)2
∂

∂ζ
{Gjj(ζ)Gkk(ζ) +Gjk(ζ)Gkj(ζ)}dζ̄dζ.

(5.35)

For all k ̸= j, the local law (3.11), Lemmas 5.3 and 5.1 applied to (5.28) give the following bound.∣∣∣∣∂ẽ(λ)∂Hjk

∣∣∣∣ = O≺(N
−1/2(1 + |λ|)η−1/2

0 ). (5.36)

This implies that for k ̸= j the first term in (5.35) is negligible, applying the local law (3.11) and
Lemma 5.3 we get

∂2ẽ(λ)

∂H2
jk

= ẽ(λ)
2iλ

π

∫
Ωα

∂f̃

∂ζ̄

∂(mj(ζ)mk(ζ))

∂ζ
dζ̄dζ +O≺(N

−1/2(1 + |λ|)2η−1/2
0 ). (5.37)

And for k = j we use a universal bound found in Lemma 5.6 of [2]∣∣∣∣∣∂sẽ(λ)

∂Hs
jk

∣∣∣∣∣ = O≺((1 + |λ|)s), s ∈ N, j, k ∈ {1, . . . , N}. (5.38)

Applying these bounds and the local laws from Theorem 3.2 to the (5.34) yields the following.

I2 = O≺(N
−1Ψ(z)(1 + |λ|)2η−1/2

0 ). (5.39)

Lastly, we compute the contribution of I3. The fourth cumulant of Hjk can be expressed in terms
of the fourth and the square of the second moments of Hjk, hence, by the moment condition (2.2), it
will be of the order N−2.

I3 =

N∑
k=1

c(4)(Hjk)E
[
{1− E}

[
∂3Gkj(z)

∂H3
jk

]
ẽ(λ) + 3

∂Gkj(z)

∂Hjk

∂2ẽ(λ)

∂H2
jk

+ 3
∂2Gkj(z)

∂H2
jk

∂ẽ(λ)

∂Hjk
+Gkj(z)

∂3ẽ(λ)

∂H3
jk

]
. (5.40)

Since c(4)(Hjj) is of order N
−2 it is sufficient to handle the off-diagonal terms. For k ̸= j summing the

last two terms and applying the local law (3.13) gives O≺(N
−3/2Ψ(z)(1 + |λ|)3). Summing the first

term gives O≺(N
−1Ψ(z)) by (3.11).

Hence by local law (3.11) and Lemma 5.3

I3 = −3
∑
k ̸=j

c(4)(Hjk)mj(z)mk(z)E

[
∂2ẽ(λ)

∂H2
jk

]
+O≺(N

−1Ψ(z)(1 + |λ|)2) (5.41)

And the computation is complete by plugging in the expression (5.37).
We finish the proof by using the bound (5.38) to get

R
(4)
jk = O≺(N

−5/2(1 + |λ|)4). (5.42)
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5.3 Two-point function

To factor E [ẽ(λ)] out of the second and third terms on the right-hand side of (5.19) we need to obtain
an analogue of the local law for the two-point function Tjj(z, ζ).
Applying the method of Lemma 4.3 from [1], we find a self-consistent equation for Tab(z, ζ).

Proposition 5.4. For any z, ζ ∈ D and any a, b ∈ {1, . . . , N}((
1− Sm(z)m(ζ)

)
T (z, ζ)

)
ab

=
(
(Sm(z)m(ζ))2

)
ab

+O≺(Ψ(z)3/2Ψ(ζ) + Ψ(z)Ψ(ζ)3/2). (5.43)

Proof. It suffices to estimate all even moments E
[
|Pab|2d

]
, d ∈ N of the quantity

Pab := Tab −
(
Sm(z)m(ζ)T

)
ab

−
(
(Sm(z)m(ζ))2

)
ab
. (5.44)

We fix j ∈ {1, . . . , N} and combine the vector Dyson equation (3.2) and the resolvent identity (5.21)
to achieve the following equality

SajGjb(z)Gjb(ζ) = −mj(z)

N∑
α=1

HjαGαb(z)SajGjb(ζ)−mj(z)

N∑
α=1

Sjαmα(z)SajGjb(z)Gjb(ζ). (5.45)

Summing over j ̸= b we get an expression for Tab that we plug into the first term of (5.44). After this
we apply the reasoning laid out in Section 5 of [1] to finish the proof.

Observe that in order to express Tjj(z, ζ) from equation (5.43) one needs to invert the stability
operator 1− Sm(z)m(ζ) and estimate the action of the inverse on the error term.

For ζ = z, we will prove that the operator 1−Sm(z)2 is bounded in norm by a constant, so we can
estimate the term on the right-hand side of (5.19) corresponding to {1− E} [Tjj(z, z)] by O≺(Ψ(z)5/2).

For ζ ̸= z, if the bound obtained from Proposition (3.3) is used, like it is done in [2], the relative
error is of order (Ψ(z)1/2 + Ψ(ζ)1/2) · (Im z + Im ζ)−1, which is not negligible for η close to optimal
N−1 scale.
The authors of [1] use a projection 1−Π onto the orthogonal complement of the principal eigenvector
of S to improve the bound and estimate the value of TrΠT separately. We aim to proceed in a similar
fashion.

5.4 Stability operator bounds

The quantitative improvement of the bound on the norm of
(
1 − Sm(z)m(ζ)

)−1
hinges on the fact

that the self-saturated energy operator F (z, ζ) possesses a ”large” spectral gap compared to the size
of 1− ∥F∥ℓ2→ℓ2 .
This statement is captured by the subsequent lemma, that follows directly from Lemma 7.4.2 of [4].

Lemma 5.5. Let F be the self-saturated energy operator F (z, ζ) defined in (3.15).
Then GapF , i.e., the difference between the two largest eigenvalues of |F |, admits the following bound.

GapF ≥ c̃, (5.46)

for a constant c̃ that depends on the constants in condition (A) and inequality (3.18).

Note that by (3.17) the quantity 1−∥F (z, ζ)∥ℓ2→ℓ2 is of order | Im z|+| Im ζ| ≪ 1, while GapF (z, ζ)
is order 1.
This can be further connected to the norm of

(
1− Sm(z)m(ζ)

)−1
using the identity

1− Sm(z)m(ζ) = U |m(z)m(ζ)|−1/2 (U∗ − F (z, ζ)) |m(z)m(ζ)|1/2, U :=
m(z)m(ζ)

|m(z)m(ζ)|
, (5.47)

together with the following lemma.

Lemma 5.6. (Lemma 7.4.7 in [4]) Let F be a hermitian matrix with ∥F∥ℓ2→ℓ2 ≤ 1 and a principal
ℓ2-normalized eigenvector v, then for any unitary operator U we have∥∥(U− F )−1

∥∥
ℓ2→ℓ2

≤ C

GapF · |1− ∥F∥ℓ2→ℓ2 ⟨v,Uv⟩|
. (5.48)
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Observe that by (3.18) the real part of the scalar product admits the following upper bound

Re⟨v,Uv⟩ ≤ 1− c

N

N∑
j=1

Immj(z) Immj(ζ)

|mj(z)mj(ζ)|
. (5.49)

Let η := Im z, η′ := Im ζ. If ηη′ > 0, then Imm(z) Imm(ζ) > 0 and we hence

1− ∥F (z, ζ)∥ℓ2→ℓ2 Re⟨v,Uv⟩ ≥ ∥F (z, ζ)∥ℓ2→ℓ2
c

N

N∑
j=1

| Immj(z)|| Immj(ζ)|
|mj(z)mj(ζ)|

. (5.50)

By the lower bound in condition (A), we have |(S Imm(z))j | ≥ cinf | Imm(z)|, where m(z) is defined
in (3.3) and thus

|mj(z)| ≤
| Immj(z)|
|mj(z)|

· 1

cinf | Imm(z)|+ |η|
. (5.51)

It follows from the estimate (5.51) and (3.5) that

1− ∥F (z, ζ)∥ℓ2→ℓ2 Re⟨v,Uv⟩ ≥ C ∥F (z, ζ)∥ℓ2→ℓ2 (cinf | Imm(z)|+ |η|) (cinf | Imm(ζ)|+ |η′|) . (5.52)

Finally, by combining this estimate with (5.47), (5.48) and (3.10) we get∥∥(1− Sm(z)m(ζ))−1
∥∥
ℓ2→ℓ2

≤ Cκ, (5.53)

for z, ζ ∈ Dκ with Im z Im ζ > 0 and some positive constant Cκ dependent on κ.

Proposition 5.7. Let z, ζ be two spectral parameters in the domain Dκ defined in (3.9) with Re z and
Re ζ in the same connected component of Iκ as defined in (3.8). Then∥∥∥(1−Π(z)

)(
1− Sm(z)m(ζ)

)−1
∥∥∥
ℓ2→ℓ2

≤ c, (5.54)

where c = cκ is a positive constant dependent of κ, and Π(z) is defined in (4.3).

The proof will requite the following technical lemma.

Lemma 5.8. Let T be a self-adjoint matrix with positive entries satisfying ∥T∥ℓ2→ℓ2 ≤ 1− ε. Let v be
the ℓ2-normalized principal eigenvector of T with positive coordinates, and let δ :=

∥∥(1− vv∗)(1− T )−1
∥∥
ℓ2→ℓ2

.

Then for any ℓ2-normalized vector w such that ∥(1− T )w∥2 ≤ ∆

∥∥(1− ww∗)(1− T )−1
∥∥
ℓ2→ℓ2

≤ δ

(
1 +

∆

ε

)
(5.55)

Proof. Denote A := (1− T )−1, then ∥A∥ℓ2→ℓ2 ≤ 1/ε. Since (1− vv∗) commutes with (1− T ) we can
write

∥(1− vv∗)w∥2 = ∥A(1− vv∗)(1− T )w∥2 ≤ δ∆. (5.56)

Now by using I = vv∗ + (1− vv∗) we compute

∥(1− ww∗)A∥ℓ2→ℓ2 ≤ ∥(1− ww∗)(1− vv∗)A∥ℓ2→ℓ2 + ∥(1− ww∗)vv∗A∥ℓ2→ℓ2 . (5.57)

The first term is bounded by δ, and the second term is bounded by ∥(1− ww∗)v∥2 /ε.
By using ∥v∥2 = ∥w∥2 = 1 we get

∥(1− ww∗)v∥22 = ∥v∥22 + |⟨v, w⟩|2
(
∥w∥22 − 2

)
= 1− |⟨v, w⟩|2. (5.58)

It follows that ∥(1− ww∗)v∥2 = ∥(1− vv∗)w∥2 ≤ δ∆, which concludes the proof of the lemma.

Proof of Proposition 5.7. Fix a parameter z with η := Im z in Dκ and denote the inverse of the stability
operator by A to condense the notation.

A ≡ A(ζ) :=
(
1− Sm(z)m(ζ)

)−1
. (5.59)
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By using the identity (5.47) with ζ = z̄ we get

A0 := A(z̄) = |m(z)|
(
1− F (z, z̄)

)−1|m(z)|−1. (5.60)

Note that the spectral theorem for the self-adjoint operator 1− F (z, z̄) implies that∥∥∥(1− vv∗)
(
1− F (z, z̄)

)−1
∥∥∥
ℓ2→ℓ2

≤ 1

GapF (z, z̄)
, (5.61)

where v := v(z, z̄) is the principal eigenvector of F (z, z̄).
Furthermore, by taking the imaginary part of the Dyson vector equation (3.2) and multiplying both
sides by | Immj(z)| we get

Immj(z)

|mj(z)|
= |mj(z)|η +

N∑
k=1

|mj(z)|Sjk Immk(z), j ∈ {1, . . . , N}. (5.62)

This implies, by definition of w in (4.3), that

(
1− F (z, z̄)

)
w = |η| · |m(z)|

∥∥∥∥ Imm(z)

|m(z)|

∥∥∥∥−1

2

. (5.63)

Taking the norm of both sides of (5.63) and using (5.51) we get∥∥(1− F (z, z̄)
)
w
∥∥
2
≤ c|η|. (5.64)

Applying Lemma 5.8 for T = F and w as in (4.3) and observing that Lemma 5.5 guarantees that
δ ≤ c′, (3.17) provides ϵ ≥ c′′|η|, and (5.64) gives ∆ ≤ c′′′|η| in the notation of Lemma 5.8, we get∥∥∥(1− ww∗)

(
1− F (z, z̄)

)−1
∥∥∥
ℓ2→ℓ2

≤ c. (5.65)

We can finally conclude from (5.60) and (3.5) that∥∥(1−Π(z)
)
A0

∥∥
ℓ2→ℓ2

≤ c. (5.66)

To estimate the norm of (1−Π(z))A we write(
1−Π(z)

)
A =

(
1−Π(z)

)
A0 +

(
1−Π(z)

)
A0

(
Sm(z) (m(z̄)−m(ζ))

)
A. (5.67)

First, we consider the case when ζ and z̄ are in the same half-plane, i.e., Im z Im ζ̄ > 0.
In this regime we can use the upper bound

|mj(z̄)−mj(ζ)| ≤
z̄∫

ζ

|m′
j(ξ)|dξ. (5.68)

Differentiating the vector Dyson equation (3.2) we get

m′
j(ξ) =

∑
k

(
1−m(ξ)2S

)−1

jk
mk(ξ)

2 (5.69)

Since Re z and Re ζ lie in the same connected component of the support of the self-consistent density
of states, so does the projection onto the real axis of the line segment connecting them and by (3.10)
for all ξ in [ζ, z̄] we have ∥∥∥(1−m(ξ)2S

)−1
∥∥∥
ℓ∞→ℓ∞

≤ 1

| Imm(ξ)|
≤ C. (5.70)

Then by using (3.5) we get

∥Sm(z)(m(z̄)−m(ζ))∥ℓ2→ℓ2 ≤ C|z̄ − ζ|. (5.71)

The result then follows by taking the norm of both sides of (5.67) and applying the estimates (5.66),
(4.1) and (5.71).
In the other case, when ζ and z̄ are in different half-planes, the desired estimate is then a direct
consequence of (5.53).
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5.5 Computation of the variance

In turn, this allows us to obtain the following expression

E

ẽ(λ) ∫
Ωα

∂f̃

∂ζ̄

∂Tjj(z, ζ)

∂ζ
dζ̄dζ

 =

= E [ẽ(λ)]

∫
Ωα

∂f̃

∂ζ̄

∂

∂ζ

(
N∑

k=1

(
1−Π(z)

)
jk

(
(1− Sm(z)m(ζ))−1(Sm(z)m(ζ))2

)
kj

)
dζ̄dζ

+ E

ẽ(λ) ∫
Ωα

∂f̃

∂ζ̄

∂

∂ζ

(
N∑

k=1

Πjk(z)Tkj(z, ζ)

)
dζ̄dζ

+O≺(Ψ(z)3/2Ψ(iη0) + Ψ(z)Ψ(iη0)
3/2).

Then the assumption (4.2) and Lemmas 5.3, 5.1 yield the following expression.

E

ẽ(λ) ∫
Ωα

∂f̃

∂ζ̄

∂

∂ζ

(
N∑

k=1

Πjk(z)Tkj(z, ζ)

)
dζ̄dζ

 = E [ẽ(λ)]

∫
Ωα

∂f̃

∂ζ̄

∂

∂ζ

(
N∑

k=1

Πjk(z)Tkj(z, ζ)

)
dζ̄dζ

+O≺(NΘ2(z) +NΘ(z)Θ(iη0)).

(5.72)

Finally, from Proposition 5.2 we can conclude that

E [ẽ(λ) {1− E} [TrG(z)]] =
iλ

π
E [ẽ(λ)]

∫
Ωα

∂f̃

∂ζ̄
K(z, ζ)dζ̄dζ + Ẽ(z), (5.73)

where K is defined in (4.5) and Ẽ(z) is the total error term collected from previous derivations.
Hence

ϕ′(λ) = −λV (f)E [ẽ(λ)] + Ẽ(λ),

where

V (f) =
1

π2

∫
Ωα

∫
Ωα

∂f̃(ζ)

∂ζ̄

∂f̃(z)

∂z̄
K(z, ζ)dζ̄dζ. (5.74)

This completes the proof of Theorem 4.1.
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[4] László Erdös. The matrix Dyson equation and its applications for random matrices, 2019,
arXiv:1903.10060.

[5] Benjamin Landon and Philippe Sosoe. Applications of mesoscopic CLTs in random matrix theory,
2019, arXiv:1811.05915.

14


	Introduction
	Model
	Wigner-type matrices
	Notations
	Linear eigenvalue statistics

	Local Law and Preliminaries
	Result
	Proof
	Non-contribution of the ultra-local scales
	Cumulant expansion
	Two-point function
	Stability operator bounds
	Computation of the variance


